Preferred Language
Articles
/
ORaPpogBVTCNdQwCEnoB
Fabrication of AgInSe2 heterojunction solar cell

Abstract. Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta=400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta=400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization , the photovoltaic parameters such as, open-circuit voltage, short-circuit current density, fill factor, ideality factor, and efficiencies, were computed. As well as the built-in potential, carrier concentration and depletion width were determined under RT and (Ta=400, 500 and 600) K from C-V measurement.

Scopus
Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fabrication and Characterization CdO:In/Si Photovoltaic Solar Cell Prepard By Thermal Evaporation

   In this work, CdO:In/Si heterojunction solar cell has been made by vacuum evaporation of cadmium oxide doped with 1% of indium thin film onto glass and silicon substrates with rate deposition (3.9A/sec) and thickness(≈250nm). XRD was investigated, the transmission was determined in range (300-1100)nm and the direct band gap energy is 2.43 eV, I-V characterization of the cell under illumination was investigated , the cell shows an open circuit voltage (Voc) of 0.6 Volt, a short circuit current density (Jsc) of 12.8 mA/cm2, a fill factor (F.F) of 0.66, and a conversion efficiency (η) of 5.2%.

View Publication Preview PDF
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
CuInS2 Ternary Compound as Absorption Layer for Solar Cell Fabrication

Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees21gr
Scopus Crossref
View Publication
Publication Date
Sat Jan 22 2022
Journal Name
Aip Conference Proceedings 2437, 020032
Study and preparation of optoelectronic properties of AgAl1-xInxSe2/Si heterojunction solar cell applications

􀀤􀁅􀁖􀁗􀁕􀁄􀁆􀁗􀀑􀀃􀀬􀁑􀀃􀁗􀁋􀁌􀁖􀀃􀁕􀁈􀁖􀁈􀁄􀁕􀁆􀁋􀀏􀀃􀀤􀁊􀀤􀁏􀀔􀀐􀁛􀀬􀁑􀁛􀀶􀁈􀀕􀀃􀀋􀀤􀀤􀀬􀀶􀀌􀀃􀁆􀁒􀁐􀁓􀁒􀁘􀁑􀁇􀀃􀁄􀁏􀁏􀁒􀁜􀁖􀀃􀁓􀁕􀁈􀁓􀁄􀁕􀁈􀁇􀀃􀁉􀁒􀁕􀀃􀁇􀁌􀁉􀁉􀁈􀁕􀁈􀁑􀁗􀀃􀁛􀀃􀀋􀀓􀀑􀀖􀀏􀀃􀀓􀀑􀀙􀀃􀁄􀁑􀁇􀀃􀀓􀀑􀀜􀀌􀀃􀁅􀁜􀀃􀁐􀁈􀁏􀁗􀁌􀁑􀁊􀀃 􀁗􀁋􀁈􀁐􀀃 􀁌􀁑􀀃 􀁄􀁑􀀃 􀁈􀁙􀁄􀁆􀁘􀁄􀁗􀁈􀁇􀀃 􀁔􀁘􀁄􀁕􀁗􀁝􀀃 􀁗􀁘􀁅􀁈􀀃 􀀋􀀕􀀑􀀘􀀍􀀔􀀓􀀐􀀖􀀃 􀁗􀁒􀁕􀁕􀀌􀀑􀀃 􀀤􀀤􀀬􀀶􀀃 􀁚􀁌􀁗􀁋􀀃 􀁇􀁌􀁉􀁉

... Show More
Preview PDF
Publication Date
Wed Sep 02 2020
Journal Name
Iraqi Journal Of Applied Physics
Heterojunction Solar Cell Based on Highly-Pure Nanopowders Prepared by DC Reactive Magnetron Sputtering

In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.

View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Fabrication and characterization of n-InSb Heterojunction for optoelectronic device

The operating characteristics of optoelectronic devices depend critically on the properties physical of the constituent materials, interesting compound has been focused on this research formed from group III and V of the periodic table. Thin film n-InSb heterjuntion were successfully fabricated on p-Si substrates by thermal evaporation technique at different annealing temperature (as prepared, 400,500,600) °C. The effect of annealing temperature on the structural, surface morphology, optical and optoelectronic properties of InSb films were investigated and studied. The crystal structure of the film was characterized by X-ray diffraction and techniques. AFM techniques inspect the surface morphology of InSb films, the study presented the val

... Show More
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Engineering And Applied Sciences
Effect Of Aluminum On The Structural, Optical, Electrical And Photovoltaic Properties Of ZnSe/n-Si Heterojunction Solar Cell

Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add

... Show More
Publication Date
Mon Jan 01 2018
Journal Name
Aip Conference Proceedings
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication