A simple UV spectrophotometric differential derivatization method was performed for the simultaneous quantification of three aromatic amino acids of tryptophan, the polar tyrosine and phenylalanine TRP, TYR and PHE respectively. The avoidance of the time and reagents consuming steps of sample preparation or analyze separation from its bulk of interferences made the approach environmentally benign, sustainable and green. The linear calibration curves of differential second derivative were built at the optimum wavelength for each analyze (218.9, 236.1 and 222.5 nm) for PHE, TRP and TYR respectively. Quantification for each analyze was in the concentration range of (1.0– 45, 0.1–20.0 and 1.0– 50.0 μg/ml) at replicates of (n=3) with a reasonable linearity R2 value of (0.9983, 0.9970 and 0.9990) for PHE, TRP and TYR, respectively. The good repeatability of the approach was expressed by the low values of relative standard deviations which were less than 1.03%. Recovery study was implemented to confirm the accuracy of the method which was (97.35-99.65, 99.90-96.10 and 98.30-99.03) for PHE, TRP and TYR, respectively
Water flow into unsaturated porous media is governed by the Richards’ partial differential equation expressing the mass conservation and Darcy’s laws. The Richards’ equation may be written in three forms,where the dependent variable is pressure head or moisture content, and the constitutive relationships between water content and pressure head allow for conversion of one form into the other. In the present paper, the “moisture-based" form of Richards’ equation is linearized by applying Kirchhoff’s transformation, which
combines the soil water diffusivity and soil water content. Then the similarity method is used to obtain the analytical solution of wetting front position. This exact solution is obtained by means of Lie’s
During the last few years, the greener additives prepared from bio-raw materials with low-cost and multifunctional applications have attracted considerable attention in the field of lubricant industry. In the present work, copolymers derived from sunflower and linseed oils with decyl methacrylate were synthesized by a thermal method using benzoyl peroxide (BPO) as a radical initiator. Direct polymerization of fatty acid double bonds in the presence of a free radical initiator results in the development of environmentally friendly copolymeric additives (Co-1 and Co-2). Fourier Transform Infrared (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR) were used to characterize the resulting copolymers. Thermal decomposition of copolymers was de
... Show MoreThe aim of this study is to provide an overview of various models to study drug diffusion for a sustained period into and within the human body. Emphasized the mathematical compartment models using fractional derivative (Caputo model) approach to investigate the change in sustained drug concentration in different compartments of the human body system through the oral route or the intravenous route. Law of mass action, first-order kinetics, and Fick's perfusion principle were used to develop mathematical compartment models representing sustained drug diffusion throughout the human body. To adequately predict the sustained drug diffusion into various compartments of the human body, consider fractional derivative (Caputo model) to investiga
... Show MoreThis study relates to the estimation of a simultaneous equations system for the Tobit model where the dependent variables ( ) are limited, and this will affect the method to choose the good estimator. So, we will use new estimations methods different from the classical methods, which if used in such a case, will produce biased and inconsistent estimators which is (Nelson-Olson) method and Two- Stage limited dependent variables(2SLDV) method to get of estimators that hold characteristics the good estimator .
That is , parameters will be estim
... Show MoreMarkov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem
... Show MoreThe necessary optimality conditions with Lagrange multipliers are studied and derived for a new class that includes the system of Caputo–Katugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left Caputo–Katugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time and the final state are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.
... Show MoreAccording to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
The poor hole cleaning efficiency could causes many problems such as high torque, drag, poor hydraulics and pipe stuck. These inherent problems result in an avoidable high operation cost which this study tried to address. In this study, the effect of cutting density on hole cleaning efficiency in deviated and horizontal wells was investigated. Experiments were conducted using 40 feet (12 m) long of flow loop made from iron and PVC. However, the test section was made from PVC with (5.1m) long and (4” ID) for outer pipe and (2” OD) inner pipe. The cutting transport ratio (CTR) was determined from weight measurements for each test. Cutting Transport Ratio has been investigated for effects of the following parameters; flow rate, cu
... Show More