Different additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH (approximately 8.6) and viscosifir at high pH mud (approximately 10.8). The experimental work show that the optimum NaOH concentration was between (2-6) lb./bbl and if more than that concentration was used, the relation between pH and plastic viscosity would be inversed. Comparative analysis of mud properties obtained from the potato starch and starch at low pH showed good rheological properties of the starch than for potato starch, while at high pH, both of them nearly showed good rheological properties. In conclusion, potato starch reduced filtration rate of fluid and improved the characteristics and consistency of mud cake as a primary function and showed an effect on the fluid rheology as a second function.
In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal
... Show MoreIn this research we studied the structural and optical properties of (CdTe) thin films which have been prepared by thermal evaporation deposition method on the glass substrate at R.T with thickness (450  25) nm., as a function of doping ratio with copper element in (1,3,5) % rate .The structure measurement by X-ray diffraction (XRD) analyses shows that the single phase of (CdTe) with polycrystalline structure with a preferred orientation [111]. The optical measurement shows that the (CdTe) films have a direct energy gap, and they decrease with the increase of doping ratio reaching to 5% . The optical constants are investigated and calculated, such as absorpti
... Show MoreThe electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreIn this study the melting point and hardness of the paraffin wax was improved by mixing it with 1:1 ratio of micro crystalline wax then adding weight percentage wt% of locally produced nano particles (CuO,ZnO,AI2O3 and bentonite ) for each addition to the wax mixture. The results showed an increase in the melting point and hardness values of the prepared samples by increasing the weight percentage of each nano particles additives. . It was found that the addition of nano bentonite to the wax mixture gave high melting point values (122.5°C)and hardness (81.2)followed by melting point value (97°C)and hardness(68.2)resulting from the addition of CuO nano particles to the wax mixture compared to other used nano particles.
The thermal evaporation technique was used to prepare the Ni-Cr films with a thickness of 200 nm and a rate of deposition of 0.22nm/Sec. The annealing was performed at 373 and 473 K. The structural and optical analyses of the grown layers were achieved and XRD patterns showed amorphous structure transferred to polycrystalline for film annealed at 373 and 473 K. AFM analysis showed that the surface of Ni-Cr films is homogenous and the average roughness, optical energy gap and absorption coefficient were increased with increasing annealing temperature (Ta).
Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreSlurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which
This study included preparation for the unsaturated polyester samples before and after reinforced by the Alumina oxide powder of different volume fraction amounting (2%,4%,6%). And this research included the study of some of mechanical properties such as (Hardness,compressive,wear). The results showed that the increase of the hardness and compressive strength after the reinforced and the increase with the volume fraction increase. As the wear test shows that the wear rate increases with applied load increase(5,10,15) from (10.6-18.6) gm/cm befor reninforced and from(5.4-15.2)gm/cm,(4.7-12.9)gm/cm,(48.1)gm/cm,after reinforced from the different volume fraction, and t
... Show MoreThis paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.
... Show More