This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classification methods, the results of the suggested method (MSAM) have been proved its superiority, where the classification accuracies are 88%, 91% and 92% for years 1986, 2000 and 2018, respectively. The results indicated that during the last three decades for study area subjected to many artificial and natural changes, these changes have impacts on land cover, vegetation, and the aquatic environment. In this paper from the results, one can see these marshes suffered was dryness, rareness in vegetation and increasing in alluvial soil during the period 1986 – 2000, while during 2000 - 2018 there were increasing in water and vegetation with a decreasing in the alluvial soil.
Solar energy is the most abundant renewable energy source. This energy can be converted directly into electricity using solar panels. The fixed tilt solar panels are the most practical and the most widely installed throughout the world. Optimum tilt angle calculation has the advantage that it does not use expensive solar trackers. This research calculates the seasonal optimum tilt angle of solar panels for 17 cities in Iraq and 83 cities in 83 countries distributed around the world. Solar Panel Angle Calculator program was used in calculating the optimum tilt angles from vertical. The optimum tilt angle varies between 6° and 112° throughout the year. This angle for winter, spring/ autumn and summer seasons are found to be between
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show Morethe study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista
The aim of the study is to detect the malignant conditions of the skin tumors through the features of optical images. This research included some of image processing techniques to detect skin cancer as a strong threat to human beings' lives. Using image processing and analysis methods to improves the ability of pathologists to detect this disease leading to more specified diagnosis and better treatment of them. One hundred images were collected from Benign and Malignant tumors and some appropriate image features were calculated, like Maximum Probability, Entropy, Coefficient of Variation, Homogeneity and Contrast, and using Minimum Distance method to separate these images. These features with Minimum Distance as a proposed making decision a
... Show MoreIt is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.
This study aims to determine the prevalence of Entamoeba histolytica, Entamoeba dispar and
Entamoeba moshkovskii by three methods of diagnosis (microscopic examination, cultivation and PCR) that
were compared to obtain an accurate diagnosis of Entamoeba spp. during amoebiasis. Total (n=150) stool
samples related to patients were (n = 100) and healthy controls (n= 50). Clinically diagnosed stool samples
(n=100) were collected from patients attending the consultant clinics of different hospitals in Basrah during
the period from January 2018 to January 2019. The results showed that 60% of collected samples were
positive in a direct microscopic examination. All samples were cultivated on different media; the Bra
Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show More