Free radical formation in heme proteins is recognized as a factor in mediating the toxicity of many chemicals. The present study was designed to evaluate the dose-response relationship of the free radical scavenging properties of pentoxifylline in nitrite-induced Hb oxidation. Different concentrations of pentoxifylline were added at different time intervals of Hb oxidation in erythrocytes lysate, and formation of methemoglobin (MetHb) was monitored spectrophotometrically. The results showed that in this model, pentoxifylline successfully attenuates Hb oxidation after challenge with sodium nitrite; this protective effect was found to be not related to the catalytic stage of Hb oxidation, th
... Show MoreAbstract:
This research aims to identify the impact of the Layout Ghazi al-Hariri hospital for surgery specialist on customer satisfaction (patients) using the model (Servicescape), the problem of the research represented in the extent to which the hospital management design of the service and Layout hospital aesthetic and functional aspects that fit patients for therapeutic and nursing services , and used the developer scale by (Miles et al., 2012) for data collection, which includes the independent variable in (17) items distributed in three dimensions (Facility aesthetics , hospital cleanliness, and the Layout accessibility ) The dependent variable is the satisfaction of customers (pat
... Show MoreThe aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove
... Show MoreUtilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller than 9.8 m/s2. These resu
... Show MoreIn this work, radius of shock wave of plasma plume (R) and speed of plasma (U) have been calculated theoretically using Matlab program.
Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo
... Show MoreThe present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea
... Show More