Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims to decrease the waiting time for clinicians to receive this information, leading to quicker treatment plans and improved patient outcomes. And we trained and tested …
In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreThe aim of the research is to measure the change in the impact of the factors of the Corona pandemic on psychological sensitivity and COVID-19 phobia in a sample of Bisha University students and to detect the differences in the phobia (phobia) Covid-19 among the sample members in the measurement before the ban and after the ban was opened, in addition to the differences in psychological sensitivity of The sample has between sizes before and after the spread of the Corona pandemic, as well as the differences in them according to the gender variable (male, female). The researcher relied on the comparative approach. The scale of psychological sensitivity and COVID-19 phobia was applied to a sample of (62) male and female respondents.
... Show MoreThis study aims to analyze the messages of a number of global news outlets on Twitter. In order to clarify the news outlets tactics of reporting, the subjects and focus during the crisis related to the spread of the Covid-19 virus. The study sample was chosen in a deliberate manner to provide descriptive results. Three news sites were selected: two of the most followed, professional and famous international news sites: New York Times and the Guardian, and one Arab news site: Al-Arabiya channel.
A total of 18,085 tweets were analyzed for the three accounts during the period from (1/3/2020) to (8/4/2020). A content analysis form was used to analyze the content of the news coverage. The results indicate an increase in th
... Show MoreThe beginning of COVID-19 in Wuhan, China in late December 2019 and its worldwide transmission has led the World Health Organization to formally address the pandemic. The pandemic has imposed influential impacts on different environmental, economic, social, health, and living aspects. Publishing in scholastic journals was not immune from these impacts.
The invention relates to a coordinate measuring machine (CMM) for determining a measuring position of a probe. The AACMM isdepends on the robotkinematics (forward and reverse) in their measurementprinciple, i.e., using the AACMM links and joint angles todetermine the exact workspace or part coordinates. Hence, themeasurements are obtained using an AACMM will be extremely accurate and precise since that ismerely dependent on rigid structural parameters and the only source of measurement error is due to human operators. In this paper, a new AACMM design was proposed. The new AACMM design addresses common issues such as solving the complex kinematics, overcoming the workspace limitation, avoiding singularity, and eliminating the effects of
... Show More