Preferred Language
Articles
/
OBeHP48BVTCNdQwCN2Zn
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims to decrease the waiting time for clinicians to receive this information, leading to quicker treatment plans and improved patient outcomes. And we trained and tested …

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Implementation of Machine Learning Techniques for the Classification of Lung X-Ray Images Used to Detect COVID-19 in Humans
...Show More Authors

COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The expe

... Show More
View Publication Preview PDF
Scopus (36)
Crossref (18)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Journal Of Applied Hematology
D-dimer and Ferritin Levels in Prediction of COVID-19 Severity
...Show More Authors
Abstract<sec> <title>BACKGROUND:

The most common cause of upper respiratory tract infection is coronavirus, which has a crown appearance due to the existence of spikes on its envelope. D-dimer levels in the plasma have been considered a prognostic factor for COVID-19 patients.

AIM OF THE STUDY:

The aim of the study is to demonstrate the role of COVID-19 on coagulation parameters D-dimer and ferritin with their association with COVID-19 severity and disease progression in a single-center study.

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Prediction of Brain Stroke at an Early Stage
...Show More Authors

     The healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun May 30 2021
Journal Name
Iraqi Journal Of Science
Analysis and Prediction of COVID-19 Outbreak by a Numerical Modelling
...Show More Authors

Pandemic COVID-19 is a contagious disease affecting more than 200 countries, territories, and regions. Recently, Iraq is one of the countries that have immensely suffered from this outbreak. The Kurdistan Region of Iraq (KRI) is also prone to the disease. Until now, more than 23,000 confirmed cases have been recorded in the region. Since the onset of the COVID-19 in Wuhan, based on epidemiological modelling, researchers have used various models to predict the future of the epidemic and the time of peak, yielding diverse numbers in different countries. This study aims to estimate the basic reproductive number [R0] for COVID-19 in KRI, using the standard SIR (Susceptible-Infected-Removed) epidemic model. A system of non

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
IoT-Smart Agriculture: Comparative Study on Farming Applications and Disease Prediction of Apple Crop using Machine Learning
...Show More Authors

     Recently, the Internet of Things has emerged as an encouraging technology that is scaling up new heights towards the modernization of real word physical objects into smarter devices in several domains. Internet of Things (IoT) based solutions in agriculture drives farming into a smart way through the proliferation of smart devices to enhanced production with minimal human involvement. This paper presents a comprehensive study of the role of IoT in prominent applications of farming, wireless communication protocols, and the role of sensors in precision farming. In this research article, the existing frameworks in IoT-based agriculture systems with relevant technologies are presented. Furthermore, the comparative analysis of the a

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Rawal Medical Journal
Obesity in COVID-19 patients is a complex interaction
...Show More Authors

Objective: To assess role of obesity in Covid-19 patients on antibodies production, diabetes development, and treatment of this disease. Methodology: This observational study included 200 Covid-19 patients in privet centers from January 1, 2021 to January 1, 2022. All patients had fasting blood sugars and anti-Covid-19 antibodies. Anthropometric parameters were measured in all participants. Results: The patients were divided into two groups according to body weight; normal body weight (50) and excess body weight (150). There was a significant difference between them regarding age. Diabetes mellitus developed in 20% of normal weight patients while 80% of excess weight patients had diabetes (p=0.0001). Antibodies production (IgM and

... Show More
View Publication
Scopus Crossref