It is believed that Organizations around the world should be prepared for the transition to IPv6 and make sure they have the " know how" to be able to succeed in choosing the right migration to start time. This paper focuses on the transition to IPv6 mechanisms. Also, this paper proposes and tests a deployment of IPv6 prototype within the intranet of the University of Baghdad (BUniv) using virtualization software. Also, it deals with security issues, improvements and extensions of IPv6 network using firewalls, Virtual Private Network ( VPN), Access list ( ACLs). Finally, the performance of the obtainable intrusion detection model is assessed and compared with three approaches.
This article investigates Iraq wars presentation in literature and media. The first section investigates the case of the returnees from the war and their experience, their trauma and final presentation of that experience. The article also investigates how trauma and fear is depicted to create an optimized image and state of fear that could in turn show Iraqi society as a traumatized society. Critics such as Suzie Grogan believes that the concept of trauma could expand to influence societies rather than one individual after exposure to trauma of being involved in wars and different major conflicts. This is reflected in Iraq as a country that was subjected to six comprehensive conflicts in its recent history, i.e. less than half a century; th
... Show MoreGiven a matrix, the Consecutive Ones Submatrix (C1S) problem which aims to find the permutation of columns that maximizes the number of columns having together only one block of consecutive ones in each row is considered here. A heuristic approach will be suggested to solve the problem. Also, the Consecutive Blocks Minimization (CBM) problem which is related to the consecutive ones submatrix will be considered. The new procedure is proposed to improve the column insertion approach. Then real world and random matrices from the set covering problem will be evaluated and computational results will be highlighted.
In this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better
The railways network is one of the huge infrastructure projects. Therefore, dealing with these projects such as analyzing and developing should be done using appropriate tools, i.e. GIS tools. Because, traditional methods will consume resources, time, money and the results maybe not accurate. In this research, the train stations in all of Iraq’s provinces were studied and analyzed using network analysis, which is one of the most powerful techniques within GIS. A free trial copy of ArcGIS®10.2 software was used in this research in order to achieve the aim of this study. The analysis of current train stations has been done depending on the road network, because people used roads to reach those train stations. The data layers for this st
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More