Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and anomalous rock faces. Furthermore, the paper explores the adoption of advanced methods, including hydraulic flow units (HFU), providing a fine-grained understanding of reservoir heterogeneity and contributing to the prediction of flow dynamics. The final section includes structural geological models, petrophysical data collected, rock type classification, and spatial data to better represent the reservoir bottom structure. It provides a valuable resource for researchers, geologists, and engineers seeking to characterize reservoirs and make optimal decisions on hydrocarbon exploration and production. It is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling.
Five novel nickel, iron, cobalt, copper, and mercury complexes were synthesized from tetraazamacrocyclic Schiff base ligand (L), which were derived from 3-(4-(dimethyl amino) benzylidene) pentane-2,4-dione and 1,2- diaminocyclohexane in a 2:2 molar ratio. Many physico-chemical and spectroscopic techniques, including melting point, 1HNMR, 13CNMR, elemental analysis, molar conductance, magnetic susceptibility, UV-Vis, FT-IR, and thermogravimetric analysis (TGA), were used to characterize the Schiff base ligand and all metal complexes. The octahedral geometry of all the complexes [MLCl2] is confirmed by spectroscopic analyses. All substances' biological properties, such as their in vitro antioxidant activity or level of free radical scavenging
... Show MoreThere is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreNew Schiff bases derivatives [IV]a-e is prepared via condensation of Derythroascorbic acid with p-substituted aldehydes in dry benzene. To obtain these derivatives, the 5,6-O-isopropylidene-L-ascorbic acid[I] was chosen as starting material, compound prepared from the reaction of L-ascorbic acid as starting material. Compound[I] was prepared from the reaction of L-ascorbic acid with dry acetone in the presence of hydrogen chloride. The esterification of hydroxyl groups at C-2 and C-3 positions with excess ofethyl α –chloroacetate in the presence of sodium acetate produce acorresebonding ester [II] , which was condensed with hydrazine hydrate to give new hydrazide [III] . The new Schiff bases [IV]a-e were synthesized by reaction of acid h
... Show MoreBackground: The isatin molecule is present in many natural substances, including plants and animals, and is used to prepare compounds with various biological activities. Objectives: To synthesize a new series of isatin derivatives with the expectation that they will have antimicrobial activity. Methods: Thiazole Schiff bases were synthesized from various Mannich bases of isatin to evaluate their antimicrobial properties. Initially, Mannich bases (2a–e) were synthesized by reacting isatin with formaldehyde and different secondary amines. Subsequently, they were treated with 2-aminothiazole to yield the final compounds (3a–e). Spectroscopic characterization was done via FT-IR and 1H-NMR. The antimicrobial screening was conducted o
... Show Moreγ-Al2O3–NPs were synthesized by a green synthesis process based on Boswellia carterii resin extract and aluminum sulphate in an alkaline medium. Boswellia carterii resin extract is a significant reducing and stabilizing agent for synthesizing γ-Al2O3–NPs.Several techniques, including Fourier–transform infrared (FT-IR), UV–visible spectroscopy, x-ray diffraction, electron microscopy (XRD), energy dispersive x-ray (EDX), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and atomic force microscopy (AFM), were utilized to investigate the final product. XRD and SEM confirmed a plate-like crystalline structure with an average size of 17.5 nm. FT-IR analysis identified aluminum oxide stretching vibrations (655,
... Show MoreWe have synthesized many metal (II) complexes using curcumin L1 as the major ligand and 2-(1H-Benzimidazol-2-yl) aniline L2 as a supporting ligand. The complexes were characterized by spectroscopy methods such as; molar conductivity, elements microanalysis, Fourier-transform spectroscopy (FT-IR), UV-vis, and mass spectroscopy. Both curcumin ligands and L2 were found to be capable of binding to M(II) and metal ions via their two N atoms, according to the data. The formula for the complexes is the same. [M (L1)(L2)H2OCl], where M is Ni(II), Co(II), Cu(II), Cd(II), and Hg(II) (II). Octahedral complexes are proposed for the prepared compounds. The bio-actives suggested that the complexes are effective against bacteria and fungus on a mi
... Show More