The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the CSVT composite and pristine chitosan for Cu(II) and Cd(II) species were systematically examined. Due to its porous structure and increased surface area, the CSVT composite demonstrated superior adsorption ability when compared to pristine chitosan. The maximum adsorption capacities of Cu(II) and Cd(II), determined by Langmuir adsorption isotherms in batch experiments, were found to be 116.22 and 147.64 mg/g, respectively, under initial pH conditions of 8 and an initial concentration of 250 mg/L. The thermodynamic analysis revealed that the adsorption process for both metal ions is spontaneous, endothermic physisorption, and thermodynamically favorable. These findings collectively affirm the CSVT composite as a highly promising adsorbent for the efficient and selective removal of Cu(II) and Cd(II) from aqueous solutions
Liquid-Liquid Extraction of Cu(II) ion in aqueous solution by dicyclohexyl-18-crown-6 as extractant in dichloroethane was studied .The extraction efficiency was investigated by a spectrophometric method. The reagent form a coloured complex which has been a quantitatively extracted at pH 6.3. The method obeys Beer`s law over range from (2.5-22.5) ppm with the correlation coefficient of 0.9989. The molar absorptivity the stoichiometry of extracted complex is found to be 1:2. the proposed method is very sensitive and selective.
ليكاند ازو جديد. 4-((3-formyl-2-hydroxyphenyl)diazenyl)-N-(5-methylisoxazol-3-yl)benzenesulfonamide, الليكاند المحضر استعمل لتحضير معقدات من ايونات معادن مختلفة مثل الكروم الثلاثي والمنغنيز الثنائي والحديد الثلاثي والبلاديوم الثنائي بنسب مولية (1:1) ( ليكاند : فلز) نتائج التشخيص للمركبات يتقنيات مطيافية الاشعة فوق البنفسجية الاشعة تحت الحمراء الرنين النووي المغناطيسي البروتوني والكربوني وطيف الكتلة والتحليل الدقيق للعناصر ومحتوى الفلز وال
... Show MoreNew series of metal ions complexes have been prepared from the new ligand [4-Amino-N-(5-methyl-isaxazol-3-yl)-benzenesulfonamide] derived from Sulfamethoxazole and 3-aminophenol. Accordingly, mono-nuclear Mn(II), Fe(III), Co (II), and Rh(III) complexes were prepared by the reaction of previous ligand with MnCl2.4H2O, CoCl2.6H2O, FeCl3.6H2O and RhCl3H2O, respectively. The compounds have been characterized by Fourier-transform infrared (FTIR), ultraviolet–visible (UV–vis), mass, 1H-, and 13C-nuclear magnetic resonance (NMR) spectra and thermo gravimetric analysis (TGA& DSC) curve, Bohr magnetic (B.M.), elemental microanal
... Show MorePoly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free
This paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ∆G, ∆H, and ∆S thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated
This paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ΔG, ΔH, and ΔS thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated.
In this research, the preparation of a chemically activated carbon from date stones by using electric and microwave assisted K2CO3 activation was studied. The effect of radiation power, radiation time, and impregnation ratio on the yield and Iodine number on the activated carbons was investigated. The activated carbon characterizations were examined by its surface area, pore structure analysis, bulk density, moisture content, ash content, iodine number, FTIR, and scanning electron microscopy (SEM). The adsorption capacity was also studied by adsorption of fluoroquinolones antibiotics, CIP, NOR, and LEVO, by the prepared activated carbon.
... Show MorePoly aniline-formaldehyde/chitosan composite (PAFC) was prepared by the in situ polymerization method. It was characterized by FTIR spectroscopy in addition to SEM, EDS and TGA techniques. The adsorption kinetics of malachite green dye (MG) on (PAFC) were studied for various initial concentrations (20, 30 and 40) mg/L at three temperatures (308, 313 and 318) K. The influence factors of adsorption; adsorbent dose, contact time, initial concentration and temperature were investigated. The kinetic studies confirmed that adsorption of MG obeyed the pseudo-second-order model and the adsorption can be controlled through external mass transfer followed by intraparticle diffusion mass transfer. A study of th
Overall enthalpy and entropy of complex formation were calculated from stability constant measurements at different tempreture also experimental results