Empirical equations for estimating thickening time and compressive strength of bentonitic - class "G" cement slurries were derived as a function of water to cement ratio and apparent viscosity (for any ratios). How the presence of such an equations easily extract the thickening time and compressive strength values of the oil field saves time without reference to the untreated control laboratory tests such as pressurized consistometer for thickening time test and Hydraulic Cement Mortars including water bath ( 24 hours ) for compressive strength test those may have more than one day.
In this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.
A field Experiment was carried out in Baghdad for the purpose of compare five horticulture machines during used two types of fuel deffirance in octane number, normal and super fuel which produced in Iraqi and measuring the vibrations transmitted of the three axes are longitudinal X , lateral Y and vertical Z from handlebar in (Mowers) to the operator which walks behind the mower, and the determine of the productivity practical of cutting, productivity passing and fuel consumption. Experiment Factorial used with two factors, The first factor was Five Mowers vary in width , types, weight and company manufacturer, The Second factor was the types of fuel used internal combination engine horticulture mowers were Normal fuel with Octane Number 82
... Show MoreThis paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreThe proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show More