Preferred Language
Articles
/
NxeX4Y0BVTCNdQwC5ijE
C.F Modules and C.P Modules
...Show More Authors

Let R be a commutative ring with identity. R is said to be P.P ring if every principle ideal of R is projective. Endo proved that R is P.P ring if and only if Rp is an integral domain for each prime ideal P of R and the total quotient ring Rs of R is regular. Also he proved that R is a semi-hereditary ring if and only if Rp is a valuation domain for each prime ideal P of R and the total quotient Rs of R is regular. , and we study some of properties of these modules. In this paper we study analogue of these results in C.F, C.P, F.G.F, F.G.P R-modules.

Preview PDF
Quick Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
⊕-J-supplemented modules
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
⊕-Rad -supplemented modules
...Show More Authors

Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Distributive Modules
...Show More Authors

  Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.  

View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-semiprime Modules
...Show More Authors

    Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever   is a Prime Ideal For proper submodule N of  B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever  annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of  prime module and quasi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
CL-duo modules
...Show More Authors

In this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
ON RICKART MODULES
...Show More Authors

Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.

The main purpose of this paper is to develop the properties of Rickart modules .

We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Supplement Extending Modules
...Show More Authors

In this note we consider a generalization of the notion of extending modules namely supplement extending modules. And study the relation between extending and supplement extending modules. And some properties of supplement extending. And we proved the direct summand of supplement extending module is supplement extending, and the converse is true when the module is distributive. Also we study when the direct sum of supplement extending modules is supplement extending.

View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Small Monoform Modules
...Show More Authors

 Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each   f ∈ Hom(N,M), f ≠ 0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules

View Publication Preview PDF
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
T-Polyform Modules
...Show More Authors

We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.

     Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.

View Publication Preview PDF
Scopus (1)
Scopus Crossref