Preferred Language
Articles
/
Nxbp4osBVTCNdQwCl-N8
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vectors to determine the sub-class of each attack type are selected. Features are evaluated to measure its discrimination ability among classes. K-Means clustering algorithm is then used to cluster each class into two clusters. SFFS and ANN are used in hierarchical basis to select the relevant features and classify the query behavior to proper intrusion type. Experimental evaluation on NSL-KDD, a filtered version of the original KDD99 has shown that the proposed IDS can achieve good performance in terms of intrusions detection and recognition.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 07 2016
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
DETECTION OF MICROBIAL CONTAMINATION IN SOME TYPES OF FLOUR THAT AVAILABLE IN LOCAL MARKETS USING BACTRAC DEVICE 3400: DETECTION OF MICROBIAL CONTAMINATION IN SOME TYPES OF FLOUR THAT AVAILABLE IN LOCAL MARKETS USING BACTRAC DEVICE 3400
...Show More Authors

A microbial study conducted for a number of flour samples (30 samples) Uses in the bakery ovens in various areas of the city of Baghdad, by used the conventional methods used in laboratories in microbial tests and compared with the modern techniqueby usedof BacTrac Device 3400 equipped from SY-LAB Impedance analysersAustrian company.The results of two ways showed (The conventional way and BacTrac Device test)that the total counts of aerobic bacteria, coliform bacteria, StaphylococcusSpp. bacteria, Bacillus cereus bacteria and yeasts and molds,Most of them were within the permissible borders in the Iraqi standard for grain and its products With free samples from SalmonellaSpp. bacteria, and that the screening by BacTrac device are shorten

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Next Generation Information Technology
Face detection and the effect of contrast and brightness
...Show More Authors

We propose a system to detect human faces in color images type BMP by using two methods RGB and YCbCr to determine which is the best one to be used, also determine the effect of applying Low pass filter, Contrast and Brightness on the image. In face detection we try to find the forehead from the binary image by scanning of the image that starts in the middle of the image then precedes by finding the continuous white pixel after continuous black pixel and the maximum width of the white pixel by scanning left and right vertically(sampled w) if the new width is half the previous one the scanning stops.

Scopus (1)
Scopus
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
An Adaptive Digital Neural Network-Like-PID Control Law Design for Fuel Cell System Based on FPGA Technique
...Show More Authors

This paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Classification of Optical Images of Cervical Lymph Node Cells
...Show More Authors
Abstract<p>the study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Classification of Rural Road Network in Al-Najaf Governorate
...Show More Authors

This study has dealt with, the issue of classification of rural road network , in addition to prepare a suggested for the classification for this network in Iraq , this classification account , the specifications and characteristics of rural roads, population, and the range taking of settlements , then this classification was applied on the rural road network in the Najaf province there are four categories of classification ,the first is major arterial rural roads divided into two major arterial and minor arterial roads , while the second category collected roads which was divided into minor arterial roads and main collected roads. The third category was represented by Local Roads , it has been divided into paved roads and unpaved, the f

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Mar 14 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Mathematical simulation of memristive for classification in machine learning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Revista Iberoamericana De Psicologia Del Ejercicio Y El Deportethis Link Is Disabled.,
THE EFFECT OF EXERCISES WITHIN A FACTORY HIERARCHICAL STRUCTURE IN REDUCING THE DEGREE OF PAIN IN A SAMPLE OF BACK PATIENTS
...Show More Authors

Scopus
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (10)
Crossref (12)
Scopus Clarivate Crossref