With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vectors to determine the sub-class of each attack type are selected. Features are evaluated to measure its discrimination ability among classes. K-Means clustering algorithm is then used to cluster each class into two clusters. SFFS and ANN are used in hierarchical basis to select the relevant features and classify the query behavior to proper intrusion type. Experimental evaluation on NSL-KDD, a filtered version of the original KDD99 has shown that the proposed IDS can achieve good performance in terms of intrusions detection and recognition.
Polyaniline nanofibers (PAni-NFs) have been synthesized under various concentrations (0.12, 0.16, and 0.2 g/l) of aniline and different times (2h and 3 h) by hydrothermal method at 90°C. Was conducted with the use of X-ray diffraction (XRD), Fourier Transform Infrared spectra (FTIR), Ultraviolet-Visible (UV-VIS) absorption spectra, Thermogravimetric Analysis (TGA), and Field Emission-Scanning Electron Microscopy (FE-SEM). The X-ray diffraction patterns revealed the amorphous nature of all the produced samples. FE-SEM demonstrated that Polyaniline has a nanofiber-like structure. The observed typical peaks of PAni were (1580, 1300-1240, and 821 cm-1 ), analyzed by the chemical bonding of the formed PAni through FTIR spectroscopy. Also, tests
... Show MoreGraphite Coated Electrodes (GCE) based on molecularly imprinted polymers were fabricated for the selective potentiometric determination of Risperidone (Ris). The molecularly imprinted (MIP) and nonimprinted (NIP) polymers were synthesized by bulk polymerization using (Ris.) as a template, acrylic acid (AA) and acrylamide (AAm) as monomers, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The imprinted membranes and the non-imprinted membranes were prepared using dioctyl phthalate (DOP) and Dibutylphthalate (DBP) as plasticizers in PVC matrix. The membranes were coated on graphite electrodes. The MIP electrodes using
... Show MoreThis paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
This paper presents a parametric audio compression scheme intended for scalable audio coding applications, and is particularly well suited for operation at low rates, in the vicinity of 5 to 32 Kbps. The model consists of two complementary components: Sines plus Noise (SN). The principal component of the system is an. overlap-add analysis-by-synthesis sinusoidal model based on conjugate matching pursuits. Perceptual information about human hearing is explicitly included into the model by psychoacoustically weighting the pursuit metric. Once analyzed, SN parameters are efficiently quantized and coded. Our informal listening tests demonstrated that our coder gave competitive performance to the-state-of-the- art HelixTM Producer Plus 9 from
... Show MoreIn low-latitude areas less than 10° in latitude angle, the solar radiation that goes into the solar still increases as the cover slope approaches the latitude angle. However, the amount of water that is condensed and then falls toward the solar-still basin is also increased in this case. Consequently, the solar yield still is significantly decreased, and the accuracy of the prediction method is affected. This reduction in the yield and the accuracy of the prediction method is inversely proportional to the time in which the condensed water stays on the inner side of the condensing cover without collection because more drops will fall down into the basin of the solar-still. Different numbers of scraper motions per hour (NSM), that is
... Show MoreThis article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th
... Show MoreThe thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show More