Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreIn this study, an efficient compression system is introduced, it is based on using wavelet transform and two types of 3Dimension (3D) surface representations (i.e., Cubic Bezier Interpolation (CBI)) and 1 st order polynomial approximation. Each one is applied on different scales of the image; CBI is applied on the wide area of the image in order to prune the image components that show large scale variation, while the 1 st order polynomial is applied on the small area of residue component (i.e., after subtracting the cubic Bezier from the image) in order to prune the local smoothing components and getting better compression gain. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, t
... Show MorePolyaniline Multi wall Carbon nanotube (PANI/MWCNTs) nanocomposite thin films have been prepared by Plasma jet polymerization at low frequency on glass substrate with preliminary deposited aluminum electrodes to form Al/PANI-MWCNT/Al surface-type capacitive humidity sensors, the gap between the electrodes about 50 μm and the MWCNTs weight concentration varied between 0, 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-15 nm and the length 10-55 μm. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. The electrical properties showed that the capacity increased with increasing relative humidity, and that the sensitivity of the sensor increases with the increase of the
... Show MoreThe design and implementation of an active router architecture that enables flexible network programmability based on so-called "user components" will be presents. This active router is designed to provide maximum flexibility for the development of future network functionality and services. The designed router concentrated mainly on the use of Windows Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service composition scheme which enables flexible programmability through integration of user components into the router's data path. Also an extended program that creates and then injects data packets into the network stack of the testing machine will be proposed, we will call this program
... Show MoreInformation processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreThe security of message information has drawn more attention nowadays, so; cryptography has been used extensively. This research aims to generate secured cipher keys from retina information to increase the level of security. The proposed technique utilizes cryptography based on retina information. The main contribution is the original procedure used to generate three types of keys in one system from the retina vessel's end position and improve the technique of three systems, each with one key. The distances between the center of the diagonals of the retina image and the retina vessel's end (diagonal center-end (DCE)) represent the first key. The distances between the center of the radius of the retina and the retina vessel's end (ra
... Show More