Gas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applied to develop the correlation based on 142 experimental data points collected from literature, validated with 85 data points not used for developing the correlation. The statistical parameters analysis showed an average absolute error (AAPE) of 0.2183, a squared correlation coefficient (R2) of 0.9978 and standard deviation (SD) of 0.2483. In addition, comparing the new correlation results with the experimental data and with those calculated by other correlations show an excellent performance for the investigated range.
Biological activity of the carotenoids which are produced fromchemically-mutaed local isolate of Rhodotorula mucilaginosawas studied. The results showed variation of inhibition activity of caritenoids against different types of pathogenic bacteria include, Staph aureus, E. coli, B. subtilis and Salmo. typh., the number declined from 2×107cell/ml to 2×104, 5×104, 2×105, 9×105 cell/ml respectively after 24hour. The produced carotenoids from alocal mutant Rhodotorula mucilaginosa revealed an antioxidant activity as free radical removal of 85.6%. Carotinoides revealed a highest stability in petroleum ether solvent for 30 days at room temperature. It found that the pigment was more stability in sesame oil compared with sun flower and coc
... Show MoreThe development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B1 and fumonisin B2 by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C18 solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith® RP-18e column
... Show MoreThe aim of this research is to study the influence of additives on the properties of soap greases, such as lithium, calcium, sodium, lithium-calcium grease, by adding varies additives, such as graphite, molybdenum disulfide, carbon black, corrosion inhibitor, and extreme pressure.
These additives have been added to grease to obtain the best percentages that improve the properties of grease such as load carrying, wear resistance, corrosion resistance, drop point, and penetration.
The results showed the best weight percentages to all types of grease which give good properties are 1.5% extreme pressure additive, 3% graphite, 1% molybdenum disulfide, 2.5% carbon black.
The other hand, the best weight percentage for corrosion inhibit
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More
The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show More