The utilization of sugarcane molasses (SCM), a byproduct of sugar refining, offers a promising bio-based alternative to conventional chemical admixtures in cementitious systems. This study investigates the effects of SCM at five dosage levels, 0.25%, 0.50%, 0.75%, 1.00%, and 1.25% by weight of cement, on cement mortar performance across fresh, mechanical, thermal, durability, and density criteria. A comprehensive experimental methodology was employed, including flow table testing, compressive strength (7, 14, and 28 days) and flexural strength measurements, embedded thermal sensors for real-time hydration monitoring, water absorption and chloride ion penetration tests, as well as 28-day density determination. Results revealed clear dose-dependent behavior, with SCM enhancing mortar flowability proportional to dosage, raising the spread diameter from 11.5 cm (control) to 20 cm at 1.25%. At 0.25% SCM, compressive strength (47.5 MPa at 28 days) and flexural strength (~2.9 MPa) were higher than those of the remaining SCM dosages, supported by sustained heat release and positive temperature differentials. However, dosages ≥ 0.5% drastically suppressed hydration kinetics and mechanical performance, with compressive strength falling below 10 MPa. Furthermore, high SCM content led to increased water absorption (up to 10.6%) and chloride permeability (CIP above 5100 C), while bulk density declined from 2250 kg/m3 to 2080 kg/m3 at 1.25% SCM. Statistical validation using one-way ANOVA confirmed that these differences across dosage levels were significant (p < 0.05), underscoring the importance of dosage optimization. This investigation confirms that low-dosage SCM (≤0.25%) can be an effective bio-additive, providing improved workability with negligible compromise in strength and durability. In contrast, higher dosages undermine matrix integrity and performance. Future work is recommended to assess long-term microstructural evolution, field exposure durability, and adaptability across diverse cementitious systems.
Modified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical
... Show MoreThis study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as
... Show MoreAn intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreMoisture induced damage in asphaltic pavement might be considered as a serious defect that contributed to growth other distresses such as permanent deformation and fatigue cracking. This paper work aimed through an experimental effort to assess the behaviour of asphaltic mixtures that fabricated by incorporating several dosages of carbon fiber in regard to the resistance potential of harmful effect of moisture in pavement. Laboratory tests were performed on specimens containing fiber with different lengths and contents. These tests are: Marshall Test, the indirect tensile test and the index of retained strength. The optimum asphalt contents were determined based on the Marshall method. The preparation of asphaltic mixtures involved
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16,
... Show MoreThis research studied the effect of magnetized water in concrete preparation and its effect on the presenting of cement in concrete mixtures also to find the ability of reducing the amount of cement in preparing one cubic meter, this is not exceed than 10% in one mixture , The experiments showed the preparation of standard cubes from the concrete which was used two kind of water magnetized water which was prepared by passing the tap water through the systems of different magnetic strength in terms of (6000,9000) Gauss and the ordinary water . The velocity of water through the magnetic field, which gives us the highest value for the compressive strength, was up to 1m/sec. to determine the best magnetic intensity, we examined The comp
... Show MoreThe current research aims to diagnose the nature of the relation between dynamic capabilities as an independent variable and competitive advantage as a respondent variable, and identify the role of each of them in achieving the required performance of the organizations and adapt to the rapid environmental changes. The research was applied to the Iraqi Cement State Company one of the formations of the Iraqi Ministry of Industry and Minerals, and based on the importance of the subject matter of the research and the importance of the research sample and company of inquiry, The researcher adopted the descriptive analytical method in completing his research. The sample of the research was Intention
... Show MoreIn recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
Gas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was
... Show More