Preferred Language
Articles
/
NhdNPo8BVTCNdQwC8GWw
Computer-based plagiarism detection techniques: A comparative study

Plagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and Near-duplicate detection (PAN) Dataset 2009- 2011. Verbatim plagiarism, according to the researchers, plagiarism is simply copying and pasting. They then moved on to smart plagiarism, which is more challenging to spot since it might include text change, taking ideas from other academics, and translation into a more difficult-to-manage language. Other studies have found that plagiarism can obscure the scientific content of publications by swapping words, removing or adding material, or reordering or changing the original articles. This article discusses the comparative study of plagiarism detection techniques.

Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Scopus Crossref
View Publication
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Image Splicing Detection Based on Discrete Wavelet Transform and co-occurrence Matrix

    In this paper a method  to determine whether an image is forged (spliced) or not is presented. The proposed method is based on  a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Scopus (6)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Scopus (15)
Crossref (13)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
Crossref (2)
Crossref
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
البحوث التربويةوالنفسية
Preview PDF
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing A Computer Program to Determine the Points and Planes in 3-Dimensional Projective Space

  The purpose of this work is to determine the points and planes of 3-dimensional projective space PG(3,2) over Galois field GF(q), q=2,3 and 5 by designing a computer program.

View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Conference Proceedings Of The Society For Experimental Mechanics Series
A comparative study of mode decomposition to relate next-ERA, PCA, and ICA modes

This paper discusses a comparative study to relate parametric and non-parametric mode decomposition algorithms for response-only data. Three popular mode decomposition algorithms are included in this study: the Eigensystem Realization Algorithm with the Natural Excitation Technique (NExT-ERA) for the parametric algorithm, as well as the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) for the non-parametric algorithms. A comprehensive parametric study is provided for (i) different response types, (ii) excitation types, (iii) system damping, and (iv) sensor spatial resolution to compare the mode shapes and modal coordinates of using a 10-DOF building model. The mode decomposition results are also compared using

... Show More
Scopus