Plagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and Near-duplicate detection (PAN) Dataset 2009- 2011. Verbatim plagiarism, according to the researchers, plagiarism is simply copying and pasting. They then moved on to smart plagiarism, which is more challenging to spot since it might include text change, taking ideas from other academics, and translation into a more difficult-to-manage language. Other studies have found that plagiarism can obscure the scientific content of publications by swapping words, removing or adding material, or reordering or changing the original articles. This article discusses the comparative study of plagiarism detection techniques.
In this paper, some commonly used hierarchical cluster techniques have been compared. A comparison was made between the agglomerative hierarchical clustering technique and the k-means technique, which includes the k-mean technique, the variant K-means technique, and the bisecting K-means, although the hierarchical cluster technique is considered to be one of the best clustering methods. It has a limited usage due to the time complexity. The results, which are calculated based on the analysis of the characteristics of the cluster algorithms and the nature of the data, showed that the bisecting K-means technique is the best compared to the rest of the other methods used.
Interface bonding between asphalt layers has been a topic of international investigation over the last thirty years. In this condition, a number of researchers have made their own techniques and used them to examine the characteristics of pavement interfaces. It is obvious that test findings won't always be comparable to the lack of a globally standard methodology for interface bonding. Also, several kinds of research have shown that factors like temperature, loading conditions, materials, and others have an impact on surface qualities. This study aims to solve this problem by thoroughly investigating interface bond testing that might serve as a basis for a uniform strategy. First, a general explanation of how the bonding strength
... Show MoreInterface bonding between asphalt layers has been a topic of international investigation over the last thirty years. In this condition, a number of researchers have made their own techniques and used them to examine the characteristics of pavement interfaces. It is obvious that test findings won't always be comparable to the lack of a globally standard methodology for interface bonding. Also, several kinds of research have shown that factors like temperature, loading conditions, materials, and others have an impact on surface qualities. This study aims to solve this problem by thoroughly investigating interface bond testing that might serve as a basis for a uniform strategy. First, a general explanation of how
... Show MoreThe vast advantages of 3D modelling industry have urged competitors to improve capturing techniques and processing pipelines towards minimizing labour requirements, saving time and reducing project risk. When it comes to digital 3D documentary and conserving projects, laser scanning and photogrammetry are compared to choose between the two. Since both techniques have pros and cons, this paper approaches the potential issues of individual techniques in terms of time, budget, accuracy, density, methodology and ease to use. Terrestrial laser scanner and close-range photogrammetry are tested to document a unique invaluable artefact (Lady of Hatra) located in Iraq for future data fusion sc
Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show More