Preferred Language
Articles
/
NhbZj4oBVTCNdQwCmZ9j
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91–0.92 and an accuracy range of 88–92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Analysing errors in learning the preasent continuous tense:Associating interference with strategy of instruction
...Show More Authors

0

View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Improved Automatic Registration Adjustment of Multi-source Remote Sensing Datasets
...Show More Authors

Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by de

... Show More
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Improved Automatic Registration Adjustment of Multi-source Remote Sensing Datasets
...Show More Authors

Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration p

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from

... Show More
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 15 2023
Journal Name
Journal Of Yarmouk
Artificial Intelligence Techniques for Colon Cancer Detection: A Review
...Show More Authors

Publication Date
Tue Apr 02 2024
Journal Name
Advances In Systems Science And Applications
A New Face Swap Detection Technique for Digital Images
...Show More Authors

View Publication
Scopus
Publication Date
Fri Mar 23 2018
Journal Name
Entropy
Methods and Challenges in Shot Boundary Detection: A Review
...Show More Authors

View Publication
Scopus (64)
Crossref (57)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Credit Card Fraud Detection Challenges and Solutions: A Review
...Show More Authors

     Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them.  This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c

... Show More
Scopus (12)
Crossref (13)
Scopus Crossref
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (122)
Crossref (115)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Developing and Sustaining a Multilevel Competitive Learning Organization – A Behavioral and Cognitive Approach
...Show More Authors

To maintain a sustained competitive position in the contemporary environment of  knowledge  economy,  organizations  as an open social systems must have an ability to learn and know  how to adapt to rapid changes  in a proper fashion so that organizational objectives will be achieved efficiently and effectively.  A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t

... Show More
View Publication Preview PDF
Crossref