<p>The objective of this paper is to study the dynamical behavior of an aquatic food web system. A mathematical model that includes nutrients, phytoplankton and zooplankton is proposed and analyzed. It is assumed that, the phytoplankton divided into two compartments namely toxic phytoplankton which produces a toxic substance as a defensive strategy against predation by zooplankton, and a nontoxic phytoplankton. All the feeding processes in this food web are formulating according to the Lotka-Volterra functional response. This model is represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability conditions of all possible equilibrium points are established. The occurrence of local bifurcation and Hopf bifurcation are investigated. Finally, numerical simulation is used to study the global dynamics of this model.</p>
The effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More