There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardness, Calcium, Magnesium, Total Solids, Nitrite, Nitrates, Ammonia, and Silica are to be used to construct the specific model, while pH, Fluoride, Aluminium, Nitrite, Nitrate, Ammonia, Silica, and Orthophosphate of the treated water were eliminated from the analysis. For modeling the coagulation and flocculation process temperature, Alkalinity and pH of raw water were the depended variables of the model. As for the modeling process turbidity of the treated water was used as the output variable. In general, the linear models including model-driven type, (Multivariate multiple regression, MMR and Multiple linear regression, MLR) have slightly higher prediction efficiencies than the, data-driven type (artificial neural network, ANNM). The coefficients of determination (R2) reached 66 to 85% for the MMR and MLR models and 65 to 81% for the ANN models.
The current study included, studying the ability of eight genera of plants belong to Brassicaceae family, Brassica tournifortii, Cakile Arabica, Capsella bursa – pastoris,Carrichtera annua, Diplotaxis acris, Diplotaxis haru , Eruca sativa and Erucaria hispanica to accumulate ten heavy metals Cadmium, Chromium , Copper, Mercury, Manganese ,Nickel ,Lead ,and Zinc . Plant leaves samples were collected from Al-Tib area during spring of 2021.The data demonstrated that, the highest conc. of Cd was 2.7 mg/kg in Diplotaxis acris leaves and lower value was 0.3 mg/kg in Cakile Arabica leaves. For Co, the highest conc.was 1.3 mg/kg in Capsella bursa – pastoris leaves, whereas the lower value was 0.5 mg/kg in Cakile arabica leaves. As for Cr ele
... Show MoreThe object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.
A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreThe research aims to improve operational performance through the application of the Holonic Manufacturing System (HMS) in the rubber products factory in Najaf. The problem was diagnosed with the weakness of the manufacturing system in the factory to meet customers' demands on time within the available resources of machines and workers, which led to time delays of Processing and delivery, increased costs, and reduced flexibility in the factory, A case study methodology used to identify the reality of the manufacturing system and the actual operational performance in the factory. The simulation was used to represent the proposed (HMS) by using (Excel 2010) based on the actual data and calculate the operational performance measures
... Show Moren this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
This study aimed to evaluate good manufacturing practices in food safety of ten different restaurants in the Al-Karkh area of Baghdad, Iraq. Forty samples collected from were collected from knives, food cutting boards, tables, hands and nails workers in restaurants. In addition. 70 food handlers were selected. Through structured interviews, information on the checklist for Good Manufacturing Practices in Food Safety, Food handlers’ general checklist for good hygiene, and Personal Hygiene Checklist were collected. The overall viable bacterial count before Good Hygiene Practices was significantly higher (P<0.05) than the total bacterial counts after Good Hygiene Practices. The highest viable bacterial counts before Good Hygiene P
... Show MoreProductivity estimating of ready mixed concrete batch plant is an essential tool for the successful completion of the construction process. It is defined as the output of the system per unit of time. Usually, the actual productivity values of construction equipment in the site are not consistent with the nominal ones. Therefore, it is necessary to make a comprehensive evaluation of the nominal productivity of equipment concerning the effected factors and then re-evaluate them according to the actual values.
In this paper, the forecasting system was employed is an Artificial Intelligence technique (AI). It is represented by Artificial Neural Network (ANN) to establish the predicted model to estimate wet ready mixe
... Show MoreThe removal of turbidity from produced water by chemical coagulation/flocculation method using locally available coagulants was investigated. Aluminum sulfate (alum) is selected as a primary coagulant, while calcium hydroxide (lime) is used as a coagulant aid. The performance of these coagulants was studied through jar test by comparing turbidity removal at different coagulant/ coagulants aid ratio, coagulant dose, water pH, and sedimentation time. In addition, an attempt has been made to examine the relationship between turbidity (NTU) and total suspended solids (mg/L) on the same samples of produced water. The best conditions for turbidity removal can be obtained at 75% alum+25% lime coagulant at coagulant dose of 80 m
... Show MoreThe effect of three ionic liquids viz., 1-hexyl-3-methylimidazolium tetrafluoroborate (ILE), 1-hexyl-3-metylimidazolium hexafluorophosphate (ILF) and 1-octyl-3-methylimidazolium tetrafluoroborate (ILG) when used as surfactants on the performance of dissolved air floatation (DAF) was investigated.
Experiments were conducted at a temperature of 30-35 ºC, 10ppm ferric chloride as coagulant, 50% recycle ratio, pH 8, and 10 minutes treatment time to find oil and grease (OG) and turbidity removal efficiencies at saturation pressure (2-6) bar.
ILs were used at concentration of 50 µl/liter of treated water in two positions in DAF system; the saturation vessel and the treatment tank. The performance using ILs
... Show More