There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardness, Calcium, Magnesium, Total Solids, Nitrite, Nitrates, Ammonia, and Silica are to be used to construct the specific model, while pH, Fluoride, Aluminium, Nitrite, Nitrate, Ammonia, Silica, and Orthophosphate of the treated water were eliminated from the analysis. For modeling the coagulation and flocculation process temperature, Alkalinity and pH of raw water were the depended variables of the model. As for the modeling process turbidity of the treated water was used as the output variable. In general, the linear models including model-driven type, (Multivariate multiple regression, MMR and Multiple linear regression, MLR) have slightly higher prediction efficiencies than the, data-driven type (artificial neural network, ANNM). The coefficients of determination (R2) reached 66 to 85% for the MMR and MLR models and 65 to 81% for the ANN models.
This study aims to assess the accuracy of digital elevation model (DEM) created with utilization of handheld Global Positioning System (GPS) and comparing with Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. It is known that the quality of the DEM is affected by both of accuracy of elevation at each pixel (absolute accuracy) and accuracy of presented morphology (relative accuracy). The University of Baghdad, Al Jadriya campus was selected as a study area to create and analysis the resulting DEM. Additionally, Geographic Information System (GIS) was used to visualize, analyses and interpolate GPS track points (elevation data) of the study area. In this
... Show MoreA design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings i
... Show MoreA field-pilot scale slow sand filter (SSF) was constructed at Al-Rustamiya Sewage Treatment Plant (STP) in Baghdad city to investigate the removal efficiency in terms of Biochemical Oxygen Demand (BOD5), Chemical oxygen demand (COD), Total Suspended Solids (TSS) and Chloride concentrations for achieving better secondary effluent quality from this treatment plant. The SSF was designed at a 0.2 m/h filtration rate with filter area 1 m2 and total filter depth of 2.3 m. A filter sand media 0.35 mm in size and 1 m depth was supported by 0.2 m layer of gravel of size 5 mm. The secondary effluent from Al-Rustamiya STP was used as the influent to the slow sand filter. The results showed that the removal of BOD5, COD, TSS, and Chloride were
... Show MoreSnakes, or active contours, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. In this research, for the segmentation of anatomical structures in medical images three approaches were implemented and compared like (original snake model, distance potential force model and Gradient Vector Flow (GVF) snake model). We used Computed Tomography image (CT) for our experiments. Our experiments show that original snake model has two problems; first is the limited capture range and the second is the poor convergence. Distance potential force model solved only the first problem of original snake and failed with second problem. Gradient Vector Flow (GVF snake) provides a go
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreEffluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
The purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreThe purpose of this study was to find out the connection between the water parameters that were examined in the laboratory and the water index acquired from the examination of the satellite image of the study area. This was accomplished by analysing the Landsat-8 satellite picture results as well as the geographic information system (GIS). The primary goal of this study is to develop a model for the chemical and physical characteristics of the Al-Abbasia River in Al-Najaf Al-Ashraf Governorate. The water parameters employed in this investigation are as follows: (PH, EC, TDS, TSS, Na, Mg, K, SO4, Cl, and NO3). To collect the samples, ten sampling locations were identified, and the satellite image was obtained on the
... Show More