With the recent growth of global populations, main roads in cities have witnessed an evident increase in the number of vehicles. This has led to unprecedented challenges for authorities in managing the traffic of ambulance vehicles to provide medical services in emergency cases. Despite the high technologies associated with medical tracks and advanced traffic management systems, there is still a current delay in ambulances’ attendance in times of emergency to provide patients with vital aid. Therefore, it is indispensable to introduce a new emergency service system that enables the ambulance to reach the patient in the least congested and shortest paths. However, designing an efficient algorithm to plan the best route for an ambulance is still a global goal and a challenge that needs to be solved. This article introduces an Internet of Things emergency services system based on a real-time node rank index (NR-index) algorithm to find the best route for the ambulance to reach the patient and provide the required medical services in emergency cases. The proposed system design copes with the dynamic traffic conditions to guarantee the shortest transport time. For this purpose, a vehicular ad hoc network is employed to collect accurate real-time traffic data. In this article, we suggest two parameters to compromise distance and congestion level. The first is the distance between the patient and the surrounding ambulance vehicles, and the second determines the congestion level to avoid the path with high congestion traffic. The system employs a developed real-time NR-index algorithm to select a suitable ambulance vehicle to respond to emergency cases at a low travel cost with the fastest journey. Finally, our system makes it easier for ambulance vehicles to use the best route and avoid heavy traffic. This allows them to make their way to the patient quickly and increases the chance of saving lives. The simulation results show significant improvements in terms of average travel time, average travel speed, and normalized routing load.
In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreThe fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreAmong many problems that reduced the performance of the network, especially Wide Area Network, congestion is one of these, which is caused when traffic request reaches or exceeds the available capacity of a route, resulting in blocking and less throughput per unit time. Congestion management attributes try to manage such cases. The work presented in this paper deals with an important issue that is the Quality of Service (QoS) techniques. QoS is the combination effect on service level, which locates the user's degree of contentment of the service. In this paper, packet schedulers (FIFO, WFQ, CQ and PQ) were implemented and evaluated under different applications with different priorities. The results show that WFQ scheduler gives acceptable r
... Show MoreRemote surveying of unknown bound geometries, such as the mapping of underground water supplies and tunnels, remains a challenging task. The obstacles and absorption in media make the long-distance telecommunication and localization process inefficient due to mobile sensors’ power limitations. This work develops a new short-range sequential localization approach to reduce the required amount of signal transmission power. The developed algorithm is based on a sequential localization process that can utilize a multitude of randomly distributed wireless sensors while only employing several anchors in the process. Time delay elliptic and frequency range techniques are employed in developing the proposed algebraic closed-form solution.
... Show MoreThis study shows impoliteness as a form of face-threatening that can be intentionally caused by verbal threats in a particular setting. It investigates: what strategies and mitigators do Iraqi-Kurdish English as a foreign language (EFL) learners use in situations of threat responses? The present investigation paper aims to examine impoliteness strategies and mitigators by these learners when they respond to threatening situations in their context. Thus, it fills a gap in pragmatics literature by investigating the reactions to threats in an Iraqi-Kurdish EFL context. To this end, 50 participants have participated in this study. An open-ended questionnaire in the form of a Discourse Completion Task (DCT) is used to elicit responses fr
... Show More