Preferred Language
Articles
/
NYYuqYYBIXToZYALzaOs
Non-Smooth Behavior of Reinforced Concrete Beam Using Extended Finite Element Method
...Show More Authors

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams with minimum reinforcement was studied.  ABAQUS program was utilized for Finite Element (FE) modeling and analysis of the beams. On the other hand, mesoscale modeling of concrete constituents was executed with the aid of ABAQUS PYTHON language and programing using excel sheets. The concrete beams under flexure were experimentally investigated as well as by the numerical analysis. The comparison between experimental and numerical results showed that the mesoscale model gives a better indication for representing the concrete models in the numerical approach and a more appropriate result when compared with the experimental results.

Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Performance Evaluation of Al-Karkh Water Treatment Plant Using Model-driven and Data-Driven Models
...Show More Authors
Abstract<p>There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn</p> ... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Removal of Methyl Orange from Aqueous Solutions by Adsorption Using Corn Leaves as Adsorbent Material
...Show More Authors

A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi

... Show More
View Publication
Crossref (19)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Advanced Pharmacy Education And Research
Co-surfactant effect of polyethylene glycol 400 on microemulsion using BCS class II model drug
...Show More Authors

View Publication
Scopus (28)
Crossref (24)
Scopus Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique
...Show More Authors

Water pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale

... Show More
Preview PDF
Crossref (46)
Crossref
Publication Date
Fri Jul 04 2025
Journal Name
Computational And Theoretical Chemistry
Coronene and BN isosters of coronene: Revealing the electron density distribution using magnetic shielding maps
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Oct 31 2018
Journal Name
Heat Transfer-asian Research
Comparative study on heat transfer enhancement of nanofluids flow in ribs tube using CFD simulation
...Show More Authors

View Publication
Scopus (21)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Green Engineering
Eco-Friendly Enhancement of Fire Tube Boiler Control in Oil Factory Using Functional Block Diagram
...Show More Authors

This research is a continued efforts for a project on the fire tube boiler control for Al Rasheed edible oil factory. The aim is to enhance the control system with new integral control one. A functional blocks diagram (FBD) was built and simulated. With Schneider smart relays, FBD differs than ladder logic programming in which the PID option is active. An extensive work was done to understand the operation sequence, emergency shutdown, and faults causing the trips. A control program was designed to control logical sequence of operation. Furthermore temperature is controlled via cascade control with fuel and air controllers. The temperature controller output is send as remote set point to the fuel controller in a serial cascade manner. The f

... Show More
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Removal of COD from Petroleum refinery Wastewater by Electro-Coagulation Process Using SS/Al electrodes
...Show More Authors
Abstract<p>In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm<sup>−2</sup>), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re</p> ... Show More
View Publication
Scopus (36)
Crossref (21)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Ecological Engineering
Biosorption of Heavy Metals from Synthetic Wastewater by Using Macro Algae Collected from Iraqi Marshlands
...Show More Authors

View Publication
Scopus (16)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatment of Al-Muthanna Petroleum Refinery Wastewater by Electrocoagulation Using a Tubular batch Electrochemical Reactor
...Show More Authors
Abstract<p>An electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm<sup>-2</sup>), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied.</p><p>Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase</p> ... Show More
View Publication
Scopus (11)
Crossref (5)
Scopus Crossref