The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a heavy fuel (HFO) and diesel fuel (D.O) and the use of tests to confirm the accuracy of the grey model. After obtaining the results, the best method to estimate the parameters of the grey model GM(1,1) is the method of the Particle Swarm Optimization method (PSO) It has been used to treatment the missing values in the data and in the prediction where it has been shown to have the best results
In general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o
... Show More
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MoreHumanity has Suffered Greatly from the Economic crisis and instability, Before the Emergence of the rule of the Capitalist System, However, the reaons were Different. But almost Completely Contradictory. At a time When the Causes of the Crisis was due to the time Factor is the product of failure of productie forces, Bears modern Crises resoled by the progress that is in the embrace of the abundance, and as far as lies in the nature and content of the capitalist system itselfas a system based on the creation of productive capacities in excess unable to accomplish through demand by the chaos of production based, on the logic of the market on one hand, and the nature of the output and direction. On the other hand the relations
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
The purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil
... Show MoreThe study included examination of three types of different origin and orange juice at the rate of recurring per sample, the results showed that the highest rates of acid (pH) in the A and juice were (4). And salts of calcium is 120 ppm in juice C and 86 ppm of magnesium in the juice B, for heavy metals the highest rate of lead .18 recorded ppm in juice B, 1.32 ppm of copper in juice A, 5 ppm of iron in the juice B, 1.3 ppm of zinc in the juice B, 0.05 ppm of aluminum in each of the sappy B and A, 0.02 ppm of cobalt in the juice B, 0.3 ppm of nickel in the juice B, 170.6 ppm sodium in C juice, but for the acids, organic that the highest rates were 3.2 part Millions of acid in the juice owner a, 260 ppm of the acid in the juice the ascorbi
... Show Moreجدلية التنظرية في الذاكرة المنظمة بين متاهة النماذج الصناعية وواقعيةالنموذج الهجين
As the process of estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .
... Show MoreThe technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.
There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr
... Show MoreIn this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show More