The present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, separately were tested for H2S gas at low (2 ppm) and high (50 ppm) concentrations. ZnO nanorods films showed a sensitivity of 14.71% for pure ZnO with a fast response time of 25.2 sec and recovery time of 33.3 sec towards 2 ppm H2S. For Ag NPs/ZnO and f-MWCNTs/ZnO, sensors showed a significant sensitivity of 27.95 and 42.39 % at ~150 °C with a response time and recovery time less than pure ZnO. The ZnO sensor showed a higher sensitivity at ~150 °C for both Ag NPs and F-MWCNTs at high gas concentration, where it was 35.085 and 58.89% respectively.
Carbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were
Multi-drug-resistant uropathogenic Escherichia coli (UPEC) is considered a significant challenge due to its ability to resist antibiotics and form biofilms. UPEC biofilm formers are well protected and largely inaccessible to antibiotics, which leads to persistent infections and evasion of the host immune system. Understanding how ciprofloxacin and trimethoprim/sulfamethoxazole affect biofilm formation is essential for improving treatment strategies for urinary tract infections (UTIs). A total of 76 UPEC isolates were obtained from Iraqi patients and identified using morphological and biochemical characteristics, as well as the Vitek®-2 Compact system. Minimum inhibitory concentrations (MICs) were determined using the Vitek®-2 system, whic
... Show MoreAbstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show MorePotential health and environmental effects of nanoparticles need to be thoroughly assessed before their widespread commercialization. The present investigation was planned with the aims to determine the effects of gold nanoparticles (GNPs) on blast (BI) and mitotic (MI) indices of cultured lymphocytes. The results revealed that BI (50.3±2.3, 30.2±1.9, 10.5±0.7 and 0.0%, respectively) and MI (70.1±2.9, 20.4±1.1, 5.3±0.1 and 0.0%, respectively) showed a gradual decreased percentage as the concentration of GNPs was increased from 0.085 to 0.66 µg/mL, and the difference was significant compared to control culture (81.6±2.5 and 90.2±3.7%, respectively). A maximum inhibition of BI and MI was occurred at the concentration 0.66 µg/mL. In
... Show MoreIn this work, CdS/TiO2 nanotubes composite nanofilms were successfully synthesized via electrodeposition technique. TiO2 titania nanotube arrays (NTAs) are commonly used in photoelectrochemical cells as the photoelectrode due to their high surface area, excellent charge transfer between interfaces and fewer interfacial grain boundaries. The anodization technique of titanium foil was used to prepare TiO2 NTAs photoelectrode. The concentration of CdCl2 played an important role in the formation of CdS nanoparticles. Field emission scanning electron microscopy (FESEM) shows that the CdS nanoparticles were well deposited onto the outer and inner of nanotube at 40 mM of CdCl2. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analyses wer
... Show MoreStatement of the Problem. The use of orthodontic fixed appliances may adversely affect oral health leading to demineralizing lesions and the development of gingival problems. Aims of the Study. The study aimed to coat orthodontic archwires with chlorhexidine hexametaphosphate nanoparticles (CHX-HMP NPs) and to evaluate the elusion of CHX from CHX-HMP NPs. Materials and Methods. A solution of CHX-HMP nanoparticles with an overall concentration of 5 mM for both CHX and HMP was prepared, characterized (using atomic force microscope and Fourier transformation infrared spectroscopy), and used to coat orthodontic stainless steel (SSW) and NiTi archwires (NiTiW). The coated segments were characterized (using scanning electron microscopy
... Show MoreBackground: The type of dental implant surface is one of many factors that determine the success of implant restoration. This study aimed to study the effect of mixture of nano titanium oxide with nanohydroxyapatite coating of screw shaped CPTi dental implant on bond strength at bone implant interface by torque removal test related to two healing periods (2 and 6 weeks). Materials and methods: Dip coating process was performed to get an even coating layer on CPTi screws. X-ray diffraction (XRD) analysis and microscopical examination were performed on the coating surfaces of the CPTi. The tibia of 10 white New Zealand rabbits was chosen as implantation sites. The tibia of each rabbit received two screws, one was coated with mixture of nanoT
... Show More