The majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution variants have been adopted to solve the 5G RNP problem. Experimental results have shown that the constrained DE/best/1/bin has achieved best results over other variants in terms of deployment cost, coverage rate and quality of service (QoS).
The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show MoreTraditionally, path selection within routing is formulated as a shortest path optimization problem. The objective function for optimization could be any one variety of parameters such as number of hops, delay, cost...etc. The problem of least cost delay constraint routing is studied in this paper since delay constraint is very common requirement of many multimedia applications and cost minimization captures the need to
distribute the network. So an iterative algorithm is proposed in this paper to solve this problem. It is appeared from the results of applying this algorithm that it gave the optimal path (optimal solution) from among multiple feasible paths (feasible solutions).
The present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS),respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showed that the adsorption of basic dye followed Freundlich iso
... Show MoreThe present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS), respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showe
Finding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s