Preferred Language
Articles
/
NRdyW5MBVTCNdQwCsdLE
Prenatal Markers of Foetal Complications

Prenatal markers are commonly used in practice to screen for some foetal abnormalities. They can be biochemical or ultrasonic markers in addition to the newly used cell free Deoxyribonucleic Acid (DNA) estimation. This review aimed to illustrate the applications of the prenatal screening, and the reliability of these tests in detecting the presence of abnormal chromosomes such as trisomy-21, trisomy-18, and trisomy-13 in addition to neural tube defects. Prenatal markers can also be used in the anticipation of some obstetrical complications depending on levels of these markers in the mother’s circulation. In the developed countries, prenatal screening tests are regularly used during antenatal care period. Neural tube defects, numerical and structural chromosomal abnormalities, in addition to some obstetrical problems are commonly screened for, by using prenatal tests. Maternal education about the importance of performing these tests should be done in order to improve the detection rate of foetal abnormalities and some pregnancy complications.

Clarivate Crossref
View Publication
Publication Date
Mon Nov 09 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
The effect of different thermal treatments and pH on the stability of a glycyrrhizin which Product from the licorice plant, Glycyrrhiza glabra L: The effect of different thermal treatments and pH on the stability of a glycyrrhizin which Product from the licorice plant, Glycyrrhiza glabra L

The plant licorice is considered important plants as nutritionally and medically and economically, as a rich in phytochemical, vitamins and minerals, and being widely available, Research indicated the presence of many nutrients such as (proteins, Carbohydrates, vitamins and minerals) as well as presence of Glycyrrhizin which responsible of sweet taste, that allowing the possibility to use it as natural intensity sweetener with few calories in Sweetening of many food. This research is aimed to study the Stability of Glycyrrhizin toward the various manufacturing conditions such as (thermal treatment, pH of foods and microwaves), so three factorial experiments was implemented to find out the Stability as following: 100C° - 121C° - Microwa

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 31 2020
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EVALUATING THE QUALITY OF IMPORTED AND LOCAL FLOUR IN TERMS OF QUALITY WITH IRON AND FOLIC ACID AND ITS COMPLIANCE WITH IRAQI STANDARD: EVALUATING THE QUALITY OF IMPORTED AND LOCAL FLOUR IN TERMS OF QUALITY WITH IRON AND FOLIC ACID AND ITS COMPLIANCE WITH IRAQI STANDARD

Food fortification has an important and necessary role in compensating for the shortage of nutritional micronutrients, especially in developing and least developed countries. So, 12 samples of flour available in the local market, whether imported or locally produced flour, were obtained during 2019. The amount of base metal of the necessary iron element in the flour models studied which are available in local markets, measured by spot testing and was compared with the values ​​that should be added according to the specification Iraqi standard. Results revealed the qualitative evaluation of iron in locally produced flour does not conform to the Iraqi standard and is almost free of any reinforcement. While the percentage of imp

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 31 2018
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
STUDYING THE EFFECT OF Proteinase K AND α-Amylase ON INHIBITION OF Staphylococcus aureus AND Klebsiella pneumoniae BIOFILM ISOLATE FROM URINARY TRACT INFECTION.: STUDYING THE EFFECT OF Proteinase K AND α-Amylase ON INHIBITION OF Staphylococcus aureus AND Klebsiella pneumoniae BIOFILM ISOLATE FROM URINARY TRACT INFECTION.

The current study aimed to investigate the viability of biofilm formation klebsilla pneumoniae and Staphylococcus aureus. 440 urine samples were collected from patients suffering from urinary tract infection (UTI) from those who were admitted and visitors to Al-Ramadi Teaching Hospital, Al-Yarmouk Teaching Hospital, Al-Ramadi Teaching Hospital for women and children and , Teaching Laboratories in the Medical City for both genders for a period extended from 5 July, 2017 to 10 October, 2017. Samples were diagnosed by culturing them on a selective media and by biochemical testes , also, diagnosis was ensured by using VITEK-2 compact system. Results showed that K.pneumoniae isolation ratio was 17.1%(68) and S.aureus ratio was 13.1%(52). Thei

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
A Review for Arabic Sentiment Analysis Using Deep Learning

     Sentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.

     In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Using VGG Models with Intermediate Layer Feature Maps for Static Hand Gesture Recognition

A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m

... Show More
Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A parallel Numerical Algorithm For Solving Some Fractional Integral Equations

In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
ON-Line MRI Image Selection and Tumor Classification using Artificial Neural Network

When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
A Cognition Path Planning with a Nonlinear Controller Design for Wheeled Mobile Robot Based on an Intelligent Algorithm

This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere

... Show More
Crossref (2)
Crossref
View Publication Preview PDF