Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
For this research, the utilisation of electrocoagulation (EC) toremove theciprofloxacin (CIP) and levofloxacin (LVX) from aqueous solutions was examined. The effective removal efficiencies are 93.47% for CIP and 88.00% for LVX, under optimum conditions. The adsorption isotherm models with suitable mechanisms were applied to determine the elimination of CIP and LVX utilizingtheEC method. Thefindingsshowed the adsorption of CIP and LVX on iron hydroxide flocs followed the Sips isotherm, with correlation coefficient values (R2) of 0.939 and 0.937. Threekinetic models were reviewed to determine the accurate CIP and LVX elimination methods using the EC method. The results showed that itfittedfor the second-order model, which indicated that the c
... Show MoreThe approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10),
... Show MoreCommunity detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo
... Show MoreIn this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communic
... Show MoreThe turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T
... Show MoreThe present study aimed to use the magnetic field and nanotechnology in the field of water purification, which slots offering high efficiency to the possibility of removing biological contaminants such as viruses and bacteria rather than the use of chemical and physical transactions such as chlorine and bromine, and ultraviolet light and boiling and sedimentation and distillation, ozone and others that have a direct negative impact on human safety and the environment. Where they were investigating the presence in water samples under study Coli phages using Single agar layer method and then treated samples positive for phages to three types of magnetic field fixed as follows (North Pole - South Pole - Bipolar) and compare the re
... Show More