Preferred Language
Articles
/
NRatb4cBVTCNdQwCskoG
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 24 2014
Journal Name
Wireless Personal Communications
Multi-layer Genetic Algorithm for Maximum Disjoint Reliable Set Covers Problem in Wireless Sensor Networks
...Show More Authors

View Publication
Scopus (22)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Jan 28 2019
Journal Name
Soft Computing
Bio-inspired multi-objective algorithms for connected set K-covers problem in wireless sensor networks
...Show More Authors

Scopus (11)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu Dec 05 2019
Journal Name
Advances In Intelligent Systems And Computing
An Enhanced Evolutionary Algorithm for Detecting Complexes in Protein Interaction Networks with Heuristic Biological Operator
...Show More Authors

View Publication
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Computer Networks
An improved multi-objective evolutionary algorithm for detecting communities in complex networks with graphlet measure
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Telecommunication Systems
Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends
...Show More Authors

View Publication
Scopus (28)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sat Aug 25 2012
Journal Name
Wireless Personal Communications
Multi-Objective Evolutionary Algorithm Based on Decomposition for Energy Efficient Coverage in Wireless Sensor Networks
...Show More Authors

Scopus (58)
Crossref (44)
Scopus Clarivate Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Using Real-Time PCR to Investigate Some of Antibiotic Resistance Genes from Streptococcus agalactiae Isolates from ewe Mastitis cases in Nineveh province
...Show More Authors

In this study, from a total of 856 mastitis cases in lactating ewes, only 34 Streptococcus agalactiae isolates showed various types of resistance to three types of antibiotics (Penicillin, Erythromycin and Tetracycline). St. agalactiae isolates were identified according to the standard methods, including a new suggested technique called specific Chromogenic agar. It was found that antibiotic bacterial resistance was clearly identified by using MIC-microplate assay (dilution method). Also, by real-time PCR technique, it was determined that there were three antibiotics genes resistance ( pbp2b, tetO and mefA ). The high percentage of isolate carried of a single gene which was the Tetracycline (20.59%) followed by percentage Penicillin was

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Extending the storage life of some fruits by using Pullulan produced from locally isolate Aureobasidium pullulans: Extending the storage life of some fruits by using Pullulan produced from locally isolate Aureobasidium pullulans
...Show More Authors

Six isolates of A. pullulans were collected from many sources including Hibiscus sabdariffa (Roselle), old Roofs of houses and bathroom surface that referred as Ap ros1, Ap or2, 3, 4 and Ap bs5, 6 respectively, all these isolates were identified based on morphological characteristics and nutritional physiology profiles, all were able to utilize various carbon and nitrogen sources such as glucose, xylose, sucrose, maltose, ammonium sulfate, ammonium nitrate and ammonium chloride, also they showed positive test for starch and amylase, while α-cellulose, ethanol, and methanol were could not be ass

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Deep Desulfurization of Diesel Fuel by Guard Bed Adsorption of Activated Carbon and Locally Prepared Cu-Y Zeolite
...Show More Authors

Desulfurization of a simulated diesel fuel by different adsorbents was studied in a fixed-bed adsorption process operated at ambient temperature and pressure.  Three different adsorption beds were used, commercial activated carbon, Cu-Y zeolite, and layered bed of 15wt% activated carbon followed by Cu-Y zeolite.Initially Y-zeolite was prepared from Iraqi rice husk and then impregnated with copper. In general, the adsorbents tested for total sulfur adsorption capacity at break through followed the order Ac/Cu-Y zeolite>Cu-Y zeolite>Ac. The best adsorbent, Ac/Cu-Y zeolite is capable of producing more than 30 cm3 of simulated diesel fuel per gram of adsorbent with a weighted average content of 5 ppm-S, while Cu-Y zeolite producing of

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref