The Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrate that GWO reduces features from 32 to 21, thereby enhancing computational efficiency and interpretability without compromising accuracy, while customized SMOTE addresses class imbalance and enhances minority-class detection. The optimized RF and XGBoost models were assessed using accuracy, precision, recall, and F1-score metrics, and achieved 100% accuracy with strong generalization. These results highlight the effectiveness of optimization-based feature selection and data balancing in improving IoT security that is extensible to deep learning and ensemble-based approaches.
The power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such ha
... Show MoreThe study was conducted for the detection of Aflatoxin B1(AFB1) in the serum and urine of 42 early and middle childhood patients (26 male and 16 female ) with renal function disease, liver function disease, in additional to atrophy in the growth and other symptoms depending on the information within consent obtained from each patient, in addition to 8 children, apparently healthy, as the control. The technique of HPLC was used for the detection of AFB1 from all samples. The results showed that out of 42 patient children, 19 (45.2%) gave positive detection of AFB1 in the serum among all age groups patients with a mean of 0.88 ng/ml and a range of (0.12-3.04) ng/ml. This was compared with the cont
... Show MoreThe objective of the present study is to verify the actual carious lesion depth by laser
fluorescence technique using 650 nm CW diode laser in comparison with the histopathological
investigation. Five permanent molar teeth were extracted from adult individuals for different reasons
(tooth impaction, periodontal diseases, and pulp infections); their ages were ranging from 20-25 years
old. Different carious teeth with varying clinical stages of caries progression were examined. An
experimental laser fluorescence set-up was built to perform the work regarding in vitro detection and
quantification of occlusal dental caries and the determination of its actual clinical carious lesion depth by
650 nm CW diode laser (excitat
This research aims to design a high-speed laser diode driver and photodetector, the result is the
design of the high-speed laser diode driver with a short pulse of 10 ns at 30 KHz frequency and the
delivered maximum pulse voltage is 5.5 mV. Also, its optical output power of the laser diode driver is
about 2.529 mW for the centroied wavelength 1546.7 nm with FWHM of 286 pm and (1270-1610) nm.
The design of the circuit based on bipolar transistor where the input pulse signal is simply generated by
an arduino kit with 15 kHz frequency and then compensated to trigger to small signal amplifier which
was is simply NPN C3355 transistor and the output is a current driver to the laser diode. OptiSystem
software and Electronic
The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show Moreلمعرفة مدى تأثير تمرينات مهارية وفق تقنية تركيز للتفكير الجاني على الدقة الحركة وتعلم هجمة الإيقاف بالغطس للطلاب في سلاح الشيش استخدمت الباحثتان المنهج التجريبي على عينة من طلاب المرحلة الثالثة بكلية التربية البدنية وعلوم الرياضة –جامعة ديالى والتي بلغت (30) طالباً موزعين على مجموعتين التجريبية والضابطة وبعد إكمال اجراءات البحث وتطبيق الاختبارات القبلية وتنفيذ التمرينات والاختبار البعدي ومعالجة الب
... Show MoreWith the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.