Drones play a vital role in the fundamental aspects of Industry 4.0 by converting conventional warehouses into intelligent ones, particularly in the realm of barcode scanning. Various potential issues frequently arise during barcode scanning by drones, specifically when the drone camera has difficulty obtaining distinct images due to certain factors, such as distance, capturing the image whilst flying, noise in the environment and different barcode dimensions. In addressing these challenges, this study proposes an approach that combines a proportional–integral–derivative (PID) controller with image processing techniques. The PID controller is responsible for continuously monitoring the camera’s input, detecting the difference between the planned and the real barcode image dimensions, and making immediate changes to the drone position to improve the process of detecting the potential barcode. The aforementioned procedure is implemented on the DJI Tello drone to verify the practical performance of the methodology introduced in this study. Results showed that drones can achieve remarkable barcode scanning performance by incorporating sophisticated computer vision technologies into PID controllers. PID computer vision algorithms are capable of analysing visual data acquired from the drone’s cameras and retrieving barcode information under a variety of situations, such as the size of the barcode, location of the barcode and noise of the warehouse environment.
This study aims to improve the quality of satellites signals in addition to increase accuracy level delivered from handheld GPS data by building up a program to read and decode data of handheld GPS. Where, the NMEA protocol file, which stands for the National Marine Electronics Association, was generated from handheld GPS receivers in real time using in-house design program. The NMEA protocol file provides ability to choose points positions with best status level of satellites such as number of visible satellite, satellite geometry, and GPS mode, which are defined as accuracy factors. In addition to fix signal quality, least squares technique was adopted in this study to minimize the residuals of GPS observations and enh
... Show MoreResearchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MorePilot-scale dead end microfiltration membranes were carried out to determine the feasibility of the process for treating the oily wastewater which discharge from some Iraqi factories such as power station of south of Baghdad and the general company of petrochemical industries. Polypropylene membranes (cylindrical shape) with different pore diameters (1 and 5 micron) were used to conduct the study on micromembrane process. The variables studied are oil concentration (100 – 1000 ppm), feed flow rate (20 – 40 l/h), operating temperature (31 – 50°C) and time (0 – 3 h). It was found that the flux increases with increasing feed flow rate, temperature and pore size of membrane, and decreases with increasing oil concentration and operating
... Show MoreIn most manufacturing processes, and in spite of statistical control, several process capability indices refer to non conformance of the true mean (µc ) from the target mean ( µT ), and the variation is also high. In this paper, data have been analyzed and studied for a blow molded plastic product (Zahi Bottle) (ZB). WinQSB software was used to facilitate the statistical process control, and process capability analysis and some of capability indices. The relationship between different process capability indices and the true mean of the process were represented, and then with the standard deviation (σ ), of achievement of process capability value that can reduce the standard deviation value and improve production out of theoretical con
... Show MoreThe present study investigates the application of a combined electrocoagulation-electrooxidation (EC-EO) process for the treatment of wastewater generated from Al-Dewaniya petroleum refinery plant in Iraq. The EC-EO process was examined in terms of its ability to simultaneously produce coagulant and oxidant agents by using a parallel plate configuration system composed of stainless steel plates as cathode and pair of aluminum and graphite plates as anode at two different current concentrations (1.92A/l and 0.96A/l). The results showed that the best conditions for treatment of Al-Dewaniya petroleum refinery wastewater using the combined approach were current concentration of (0.96A/l), current density
Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show MoreBiomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show More