Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.
The x-ray fluorescence (XRF) of Znpc molecule with (flow of Ar) and Znpc molecule with (grow in N2) showed two peaks at (8.5and 9.5 Kv) referring to orbital transition ) K?-shell & K?-shell) respectively. The study of x-ray diffraction (XRD) where it was observed good growth of the crystal structure as a needle by the sublimation technique with a ?-phase of (monoclinic structure ) . Using Bragg equation the value of the interdistance of the crystalline plane (d-value) were calculated. We noticed good similarity with like once in the American Standards for Testing Material (ASTM) .Powder Diffraction File (PDF) Program was used to ensure the information obtained from (ASTM) . The output of (PDF) was compared with celn program, where the val
... Show MoreThe research demonstrates new species of the games by applying separation axioms via sets, where the relationships between the various species that were specified and the strategy of winning and losing to any one of the players, and their relationship with the concepts of separation axioms via sets have been studied.
In this research and by using the concept of , a new set of near set which is nano-Ἷ-semi-g-closed set was defined. Some properties and examples with illustrative table and an applied example were presented.
The purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
In this paper, we introduce the notion of Jordan generalized Derivation on prime and then some related concepts are discussed. We also verify that every Jordan generalized Derivation is generalized Derivation when is a 2-torsionfree prime .
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
We present the concept of maps Γ- periodi2 on Γ -near-ring S. Our main goal is to research and explore the presence and mapping traits such as h Γ –hom anti-Γ –hom, Γ –α-derivations of Γ -periodi2 on Γ- near-rings.
This paper propose the semi - analytic technique using two point osculatory interpolation to construct polynomial solution for solving some well-known classes of Lane-Emden type equations which are linear ordinary differential equations, and disusse the behavior of the solution in the neighborhood of the singular points along with its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.