Objective: This study evaluated the effect of immediate dentin sealing on the marginal adaptation of lithium disilicate overlays with three different types of resin-luting agents: preheated composite, dual-cure adhesive resin, and flowable composite. Materials and Methods: Forty-eight maxillary first premolars of similar size were prepared with a butt joint preparation design. The teeth were separated into two primary groups, each with twenty-four teeth: Group DDS: Delay dentin sealing (non-IDS) teeth were not treated. Group IDS: dentin sealing was applied immediately after teeth preparation. Each group was subsequently separated into three separate subgroups. Subgroups (DDS+Phc, IDS+Phc): cemented with preheated composite (Enamel plus HRi, Micerium, Italy), Subgroups (DDS+Dcrs, IDS+Dcrs): cemented with dual-cured resin cement (RelyX Ultimate, 3M ESPE, Germany) and Subgroups (DDS+Fc, IDS+Fc): Cemented with flowable composite (Filtek supreme flowable, 3M ESPE, USA). Using a digital microscope with a magnification of 230x, the marginal gap was measured before and after cementation at four different locations from each surface of the tooth, and the mean of measurements was calculated and analyzed statistically using the independent t-test, one-way ANOVA test, Bonferroni correction at a significance level of 0.05. Results: The samples that were immediately sealed with dentin bonding agent showed lower marginal gaps than delayed dentin sealing, both pre-and post-cementation for all subgroups, with a statistically significant difference (p < 0.01). The marginal gap was significantly lower in the IDS+Fc (48.888 ± 5.5 micro m) followed by the IDS+Dcrs group (53.612 ±5.8 micro m) and IDS+Phc (79.19 9±6.9 micro m) respectively, while the largest marginal gaps were observed in the DDS+Phc group (86.505 ± 5.4 micro m). Conclusion: Generally, the teeth with IDS showed better marginal adaptation than teeth without IDS. The marginal gap was smaller with flowable composite and dual-cure resin cement than with preheated composite.
Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreFeasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact t
... Show MoreColloidal silver nanoparticles were prepared by single step green synthesis using aqueous extracts of the leaves of thyme as a function of different molar concentration of AgNO3 (1,2,3,4 mM(. The Field Emission Scanning Electron Microscopy (FESEM), UV-Visible and X-ray diffraction (XRD) were used to characterize the resultant AgNPs. The surface Plasmon resonance was observed at wavelength of 444 nm. The four intensive peaks of XRD pattern indicate the crystalline nature and the face centered cubic structure of the AgNPs. The average crystallite size of the AgNPs ranged from 18 to 22 nm. The FESEM image illustrated the well dispersion of the AgNPs and the spherical shape of the nanoparticles with a particle size distribution be
... Show MoreThe most universal and basic damages caused by an earthquakes are buildings damage and human casualties. A simplified method, the RADIUS 99 Tool is used to calculate seismic intensity (shaking) distribution, buildings damage, number of casualties and lifelines damage, due to assumed earthquake scenario. In this study, Al - Kadhmiya sector in Baghdad city was chosen for assessing seismic risk, for this purpose, this area was divided into mesh of 1*1 km2 cell size, and a scenario of (Manjil) earthquake (that struck Iran in 1990) was utilized with following earthquake magnitudes (5 and 7), with epicenter distance (3, 10 and 100 km), and depths (2 and 5 km). It was found that, the best soil types for constructions are those with medium and h
... Show MoreMetal contents in vegetables are interesting because of issues related to food safety and potential health risks. The availability of these metals in the human body may perform many biochemical functions and some of them linked with various diseases at high levels. The current study aimed to evaluate the concentration of various metals in common local consumed vegetables using ICP-MS. The concentrations of metals in vegetables of tarragon, Bay laurel, dill, Syrian mesquite, vine leaves, thymes, arugula, basil, common purslane and parsley of this study were found to be in the range of, 76-778 for Al, 10-333 for B, 4-119 for Ba, 2812-24645 for Ca, 0.1-0.32 for Co, 201-464 for Fe, 3661-46400 for K, 0.31–1.
... Show MoreKE Sharquie, AA Noaimi, EA Al-Janabi, Our Dermatology Online, 2014 - Cited by 11
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreChange detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac