A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in combating overfitting in training deep neural networks.
The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show MoreIn the present study, gold nanoparticles (AuNPs) were prepared using a simple low cost method synthesized cold plasma at different exposure time . The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AuNPs showed surface Plasmon resonance centered at 530, 540,and 533 nm. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of gold nanoparticles for all samples were prepared .The average crystallite size of the AuNPs was 20-40 nm. Morphology of the AuNPs were carried out using FESEM. Observations show that the AuNPs synthesized we well dispersed with and particle sizes ranging from 9 to 31 nm with spherical shapes which are cle
... Show MoreArtificial roughness applied to a Solar Air Heater (SAH) absorber plate is a popular technique for increasing its total thermal efficiency (ηt−th). In this paper, the influence of geometrical parameters of V-down ribs attached below the corrugated absorbing plate of a SAH on the ηt−th was examined. The impacts of key roughness parameters, including relative pitch p/e (6–12), relative height e/D (0.019–0.043), angles of attack α (30–75°), and Re (1000–20,000), were examined under real weather conditions. The SAH ηt−th roughened by V-down ribs was predicted using an in-house developed conjugate heat-transfer numerical model. The maximum SAH ηt−th was shown to be 78.8% as predicted under the steady-state condition
... Show MoreThe process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The develop
... Show MoreAbstract: Israel formulated its security theory, which it established on the "pretext of war", meaning converting any Arab action that Israel deems a threat to its security, into a pretext to ignite the fuse of war, considering this a violation of an existing situation, and then it initiates preventive and pre-emptive attacks, then immediately turns into transfer the war to the enemy's land, to achieve a quick solution by (destroying the enemy), occupying its lands, and benefiting of the advantage of working on (internal lines against an enemy) working on external lines, and ending the war quickly, before the major powers intervene to impose a ceasefire
Different additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH
... Show MoreTerrestrial laser scanners (TLSs) are 3D imaging systems that provide the most powerful 3D representation and practical solutions for various applications. Hence this is due to effective range measurements, 3D point cloud reliability, and rapid acquisition performance. Stonex X300 TOF scanner delivered better certainty in far-range than in close-range measurements due to the high noise level inherent within the data delivered from Time of Flight (TOF) scanning sensors. However, if these errors are manipulated properly using a valid calibration model, more accurate products can be obtained even from very close-range measurements. Therefore, to fill this gap, this research presents a user-oriented target-based calibration routine to
... Show MoreThe present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreThe green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show More