The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compressive strength for blended cement with 10% replacement are (20, 11 and 5) % , (2 , 12 and, 13) % and (18, 15 and 16) % for limestone , quartzite and porcelinite respectively at (7,28 and 90)days for each compare to the reference mix, while blended cement with 20% replacement are (-3, -5 and -11) ,(6, -4% and -5) and (6, 4 and 6) % for limestone , quartzite and porcelinite respectively at (7, 28 and 90)days compare to the reference mix .The other mechanical properties (flexural tensile strength and splitting tensile strength) are the same phenomena of increase and decrease in compressive strength. The results indicated that the manufacture Portland-limestone cement, Portland-quartzite cement and Portland-porcelinite cement with 10% replacement of cement with improvable mechanical properties while the manufacture Portland-porcelinite cement with 20% replacement of cement with slight improvable mechanical properties and more economical cost.
Unsaturated polyester was used as a matrix which was filled with different percentages of cobalt ferrite using hand lay-up method. Cobalt ferrite was synthesized using solid state ceramic method with reagent of CoO and Fe2O3. Mechanical properties such tensile strength, Young's modulus and shore D hardness of the composite have been studied. All these properties have increased by 10% with increasing cobalt ferrite contents. Also the thermal properties such thermal conductivity and specific heat capacity are highly increased as the ferrite content increased, while the thermal diffusivity increased by 22 %. On the other hand dielectric strength of composite has been measured which increased by 50% by increasing the cobalt ferrite content.&
... Show MoreThe different parameters on mechanical and microstructural properties of aluminium alloy 6061-T6 Friction stir-welded (FSW) joints were investigated in the present study. Different welded specimens were produced by employing variable rotating speeds and welding speeds. Tensile strength of the produced joints was tested at room temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and analyzed by means of brinell hardness number . Besides to thess tests the bending properties investigat
... Show MoreA tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring d
... Show MoreFailure in asphalt mixture and distress in pavement are major issues to roads infrastructure. Selecting an appropriate chemical composition of asphalt cement is a key component in avoiding these issues. This work aimed to investigate the effect of the chemical composition of different polar fractions on the rheological and physical properties of asphalt cement. Four types of asphalt cement with penetration grades of 20/30, 40/50, 60/70 and 85/100 were divided into four fractions. Complex shear modules, rutting resistance and rotational viscosity of the asphalt cement were determined by using a Dynamic Shear Rheometer and a Rotation Viscometer, respectively. The results show that an increase in the asphaltene content and Gastel index resulte
... Show MoreIn this study, two types of mixes were adopted by using two grading of coarse aggregate. The practical side of this study was to produce no-fine aggregate concrete by using crushed clay brick aggregates. The durability of the produced concrete and internal sulfate attack was studied. For durability assessment, it is found that the no-fine concrete made with crushed brick aggregate lost about (15-25) % of its compressive strength after being subjected to 60 cycles of wetting and drying with age 120 days. The curing condition showed that the water curing improved the compressive strength with a rate higher than that when sealed or air dry curing were used. The crushed brick no-fine concrete de
... Show MoreThe effect of compound machine on wheat/ AlNoor cultivar was studied based on some technical indicators. were tested under three speeds ( 2.541, 3.433 and 4.091km.hr-1) and three tillage depths (14, 16 and 18cm). The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the 2.541km.hr-1 practical speed was significantly better than other two speed in all studied conditions. Except for the FC, which achieved the best results with the third speed 4.091 km.hr-1. mechanical parameters, plant growth parameters and yield and growth parameters. The 1
This study involves adding nano materials and interaction with cement mortar behavior for several mortar samples under variable curing time with constant water to cement ratio (W/C = 0.5). The effects of adding nano materials on the microstructure of cement mortar were studied by (Scanning Electronic Microscopy (SEM) and X-Ray (for samples at different curing time 28 and 91 days. Small ratio replacements of nano particles (SiO2 or Al2O3) were added to Ordinary Portland Cement (OPC) type (I). The percentage of nano materials additives replacement by weight of ordinary Portland cement includes (1, 2, 3, 4 and 5%) for both types of nano materials with constant (W/C) ratio, also the amount of the fin
... Show MoreThe most used material in the world after water is concrete, which depends mainly on its manufacture of cement leading to the emission of carbon dioxide (CO2), flying dust, and other greenhouse gasses (GHGs) resulting in pollution of the atmosphere. The emission of CO2 from cement production is approximately 5% of the global anthropogenic CO2. This research focuses on investigating the amount of CO2 emission from the Iraqi General Cement Company plants includes the cement factories of Kirkuk, Al-Qa’em, Fallujah, and Kubaisa, using the GHGs Protocol Measures Program (specifically cement based-method).
This research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give