Urinary tract infection is a bacterial infection that often affects the bladder and thus the urinary system. E. coli is one of the leading uropathogenic bacteria that cause urinary tract infections. Uropathogenic E. coli is highly effective and successful in causing urinary tract infections through biofilm formation and urothelial cell invasion mechanisms. Other organisms that cause urinary tract infections include members of the Enterobacteriaceae family, streptococci and staphylococci species and perch. In addition, K.penumoniae is another important gram-negative bacterium that causes urinary tract infections. With the PCR technique, unseen bacterial species can be detected using standard clinical microbiology methods. In this study, the antibiotic resistance of E. coli and K. penumoniae bacteria causing urinary tract infection was analyzed by PCR technique. As a result of the experiments conducted within the scope of our study, it was found that bla SHV, one of the virulence factors of E. coli isolates, and bla CTX-M, one of the genes that produce ESBL, were related that both these virulence factors can be found at the same time in ESBL positive and negative isolates. It appeared that bla CTX-M gene is not detected in any of the ESBL negative isolates. It demonstrated that the bla CTX-M gene was more dominant in the development of resistance to β-lactam group antibiotics. Also, the results of the experiments conducted within the scope of our study, the frequency percentage of β-lactamase resistance genes (bla TEM, bla SHV and bla CTX-M) increased in K. pneumoniae compared to E. coli isolates. Moreover, phenotypic and genotypic methods are needed to detect the presence of different gene products associated with resistance in E. coli and K. pneumoniae isolates.
Abstract
Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe
... Show MoreThe results of theoretical and experimental investigations carried out to study the effect of load and relative sliding speed on the abrasive wear behavior in drilling bit teeth surfaces of an insert tungsten carbide bit have been presented. Experimentally, an apparatus for abrasive wear tests conducted on the modified ASTM-G65 was modified and fabricated to facilitate loading and measurement of wear rate for the sand/ steel wheel abrasion test, which involves two cases of contact; first is at dry sand and second is under wet condition. These tests have been carried under varied operating parameters of normal load and sliding speed. A theoretical model based upon the Archard equation has been developed for predicting wear simulation by u
... Show MoreIn this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon.
... Show MoreThe new ligand [3,3’-(1,2-phenylenebis(azanediyl))bis(5,5-dimethylcyclohex-2-en-1-one)] (L) derived from 5,5-Dimethylcyclohexane-1,3-dione with 1,2-phenylenediamine was used to prepare a new chain of metal complexes of Mn(ii), Co(ii), Ni(ii), Cu(ii), Cd(ii) and Zn(ii) by inclusive formula [M(L)]Cl2. Characterized compounds on the basis of 1H, 13CNMR (for ligand (L)), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H and %N, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA), while its corrosion inhibition for (plain steel) in tap water is studied by weight loss. These measurements proved th
Background. Teaching quality in gymnastics is influenced by teachers' performance and attitudes, leading to increased functional creativity and psychological well-being. This, in turn, contributes to the success of the sports institution by enhancing the overall performance and overall well-being of the students. Objectives. The research aims to assess the psychological well-being and functional creativity of female gymnastics professors in Iraqi colleges of physical education and sports sciences, focusing on their level of well-being and the relationship between these factors. Methods. The researchers used a descriptive survey method to survey female gymnastics professors at 16 colleges in Iraq's physical education and sports science
... Show MoreBackground: The aim of this study was to evaluate the effect of thermo cycling and different pH of artificial saliva (neutral, acidic, basic) on impact and transverse strength of heat cure acrylic resin reinforced of with 5% silanated ZrO2 nano fillers. Materials and methods: 120 samples were prepared, 60 samples for impact strength test and another 60 samples for transverse strength test, for each test, samples were divided into two major groups (before and after thermo cycling), then each of these major groups were further subdivided into 3 subgroups according to the pH of prepared artificial saliva (neutral, acidic, basic). Charpy impact device was used for impact strength test and Flexural device was used for transverse strength test. R
... Show MoreTo enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehen
... Show More