In this study, nickel cobaltite (NC) nanoparticles were created using the sol-gel process and used as an adsorbent to adsorb methyl green dye (MG) from aqueous solutions. The adequate preparation of nickel cobaltite nanoparticles was verified using FT-IR, SEM, and X-ray diffraction (XRD) studies. The crystalline particle size of NC nanoparticles was 10.53 nm. The effects of a number of experimental variables, such as temperature, adsorbent dosage, and contact time, were examined. The optimal contact time and adsorbent dosage were 120 minutes and 4.5 mg/L, respectively. Four kinetic models—an intraparticle diffusion, a pseudo-first-order equation, a pseudo-second-order equation, and the Boyd equation—were employed to monitor the adsorption process. Modeling of the experimental data showed that the pseudo-second-order model accurately captured the adsorption kinetics due to the high value of the correlation coefficients (R2). MG dye is gradually adsorbed to the NC nanoparticles through boundary layer diffusion and intraparticle diffusion. The results of the thermodynamic analysis showed that the MG dye adsorption was endothermic and a nonspontaneous phyisorption process.
Re-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c
The use of ultraviolet rays is one of the methods of treating surface contamination of many foods especially pickles. however, there are some side effects to its use, especially in high percentage oil food products, it is necessary to determine the appropriate doses and time periods to avoid deterioration of its oil physicochemical characteristics. this study was conducted to see the effect of ultraviolet rays 15W on some chemical properties of olive oil when using it to preserve green olive pickles, treated for 5, 10 and 15 min daily. green olive fruits Iraqi variety (al-ashrasi), in season (2020-2021) were pickled using Spanish style, the best time period to pr
... Show MoreCoupling reaction of 4-amino antipyrene with 2,6-dimethyl phenol gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII, ZnII, CdII, and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UVVis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied followin
... Show MoreCoupling reaction of 2-amino benzoic acid with phenol gave the new bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, FT-IR and UV-Vis spectroscopic technique. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentr
... Show MoreThe present study aimed to synthesize selenium nanoparticles (SeNPs) using aqueous extract of black currant as a reducing agent. The green synthesized black currant selenium nanoparticles (BCSeNPs) were identified by color change. The characterization of SeNPs was achieved by Ultraviolet-visible (UV–VIS) spectroscopy, scanning electron microscopy (SEM), X–ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). These tests were used to detect: stability, morphology, size, crystalline nature, and functional groups present on the surface of BCSeNPs. The results revealed appearance of the brick-red color indicating the specific color of selenium nanoparticles, and UV-Vis spectroscopy showed band absorbanc
... Show MoreIn the present study, a low cost adsorbent is developed from the naturally available sawdust
which is biodegradable. The removal capacity of chromium(VI) from the synthetically prepared
industrial effluent of electroplating and tannery industrial is obtained.
Two modes of operation are used, batch mode and fixed bed mode. In batch experiment the
effect of Sawdust dose (4- 24g/L) with constant initial chromium(VI) concentration of 50 mg/L and
constant particle size less than1.8 mm were studied.
Batch kinetics experiments showed that the adsorption rate of chromium(VI) ion by Sawdust
was rapid and reached equilibrium within 120 min. The three models (Freundlich, Langmuir and
Freundlich-Langmuir) were fitted to exper