Increased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply voltage. The second phase, determine the optimal reverse body bias that can be applied to all gates for standby power optimization at the optimal supply voltage determined from the first phase. Therefore, there exist two sets of gates and two reverse body bias values for each set. The reverse body bias is switched between these two values in response to the mode of operation. Experimental results are obtained for some ISCAS-85 benchmark circuits such as 74L85, 74283, ALU74181, and 16 bit RCA. The optimized circuits show significant energy saving ranged (from 14.5% to 42.28%) and standby power saving ranged (from 62.8% to 67%).
In this work, effects of using different evaporative cooling pads (ECPs) on the energetic and exergetic efficiency of a direct evaporative air cooler (DEAC) have been theoretically and experimentally investigated. Three types of ECPs were used, i.e., honeycomb cellulose cooler pad (HCCP), shading-cloth cooler pad (SCCP), and aspen wood wool cooler pad (AWWCP). For SCCP and AWWCP, a 3-cm pad thickness was used, while for the HCCP, three different values of pad thickness were used, i.e., 3, 5, and 7 cm. Tests were carried out using air velocities of 8, 14, and 19 m/s, measured at the DEAC outlet. Engineering equation solver (EES) used for performing the required calculations of the various parameters affecting the thermal performance of the D
... Show MoreInternational relations scholars have increasingly debated the evolving landscape of actors that challenge the traditional state-centric world order. A key element of this transformation is the rise of sub-state actors, which engages in alternative diplomacy parallel to the state, transcending traditional state-centric frameworks. This paper explores the significant shifts in international actorness over the late 20th century, focusing on the emergence and implications of sub-state diplomacy, or "paradiplomacy." First, the study introduces sub-state actors and their role in challenging the dominant state-centric discourse. It then examines the dynamic evolution of paradiplomacy, highlighting how sub-states have expanded their global
... Show MoreNowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th
... Show MoreThree-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
In parallel with the shell model using the harmonic oscillator's single-particle wave functions, the Hartree-Fock approximation was also used to calculate the neutron skin thickness, the mirror charge radii, and the differences in proton radii for 13O-13B and 13N-13C mirror nuclei. The calculations were done for both mirror nuclei in the psdpn model space. Depending on the type of potential used, the calculated values of skin thickness are affected. The symmetry energy and the symmetry energy's slope at nuclear saturation density were also determined, and the ratio of the density to the saturation density of nuclear matter and the symmetry energy has a nearly linear correlation. The mirror ener
... Show MoreTo ensure that a software/hardware product is of sufficient quality and functionality, it is essential to conduct thorough testing and evaluations of the numerous individual software components that make up the application. Many different approaches exist for testing software, including combinatorial testing and covering arrays. Because of the difficulty of dealing with difficulties like a two-way combinatorial explosion, this brings up yet another problem: time. Using client-server architectures, this research introduces a parallel implementation of the TWGH algorithm. Many studies have been conducted to demonstrate the efficiency of this technique. The findings of this experiment were used to determine the increase in speed and co
... Show MoreIn this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule –
... Show More