Increased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply voltage. The second phase, determine the optimal reverse body bias that can be applied to all gates for standby power optimization at the optimal supply voltage determined from the first phase. Therefore, there exist two sets of gates and two reverse body bias values for each set. The reverse body bias is switched between these two values in response to the mode of operation. Experimental results are obtained for some ISCAS-85 benchmark circuits such as 74L85, 74283, ALU74181, and 16 bit RCA. The optimized circuits show significant energy saving ranged (from 14.5% to 42.28%) and standby power saving ranged (from 62.8% to 67%).
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreThis paper presents a numerical solution to the inverse problem consisting of recovering time-dependent thermal conductivity and heat source coefficients in the one-dimensional parabolic heat equation. This mathematical formulation ensures that the inverse problem has a unique solution. However, the problem is still ill-posed since small errors in the input data lead to a drastic amount of errors in the output coefficients. The finite difference method with the Crank-Nicolson scheme is adopted as a direct solver of the problem in a fixed domain. The inverse problem is solved sub
... Show MoreThe increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha
... Show MoreResearchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show MoreAmong a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreThis paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t
... Show MoreThe study of properties of space of entire functions of several complex variables was initiated by Kamthan [4] using the topological properties of the space. We have introduced in this paper the sub-space of space of entire functions of several complex variables which is studied by Kamthan.
In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show More