Background: Chemotherapeutic medication treatment for cancer is typically used in conjunction with other techniques as part of a routine regimen. It is well established that the capacity of different chemotherapeutic drugs to induce apoptosis is correlated with their anticancer efficacy. Quinazolinone-based drugs have demonstrated excellent responses from several cancer cell types. These substances have a lot of potential for use as building blocks in the creation of apoptosis inducers. Objective: To assess the new quinazolinone derivatives (M1 and M2) that were recently synthesized for their potential to halt wound healing and to use the acridine orange/propidium iodide (AO/PI) double stain to assess their capacity to induce apoptosis in the chosen cancer cell lines. Methods: Using the breast carcinoma cell line (MCF-7) and the lung adenocarcinoma cell line (A549), two quinazolinone derivatives (M1 and M2) were investigated for their capacity to inhibit wound healing and induce apoptosis. Results: In both cell lines, the chemicals were found to be effective inducers of apoptosis and to considerably limit wound healing. Conclusions: In cancer cell lines (MCF-7 and A549), compounds M1 and M2 efficiently inhibited wound repair and triggered apoptosis.
The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various
... Show MoreIn this study a new antiseptic was formulated and tested to match the effectiveness against microorganisms. The formulation consisted of Povidone - Iodine (PVP-I) (10%), H2O2 (3%) and Aloe Vera gel (pure). Different ratios of these materials were prepared within the acceptable range of pH for an antiseptic (3-6). The prepared samples were tested. The In Vitro test was performed by using four bacteria, two were Gram-Positive (Staphylococcus aureus and Bacillus cereus) and two were Gram-Negative (Escherichia coli and Pseudomonas aeruginosa). The new antiseptic showed 100% killing rate for E. coli, Ps. aeruginosa and S. aureus and 96.4667% killing rate for B. cereus. When the new antiseptic was compared with two common
... Show MoreThis paper describes the synthesis of ?- Fe2O3 nanoparticles by sol-gel route using carboxylic acid(2-hydroxy benzoic acid) as gelatin media and its photo activity for degradation of cibacron red dye . Hematite samples are synthesized at different temperatures: 400, 500, 600, 700, 800 and 900 ?C at 700 ?C the ?-Fe2O3 nanoparticles are formed with particle size 71.93 nm. The nanoparticles are characterized by XRD , SEM, AFM and FTIR . The 0.046 g /l of the catalyst sample shows high photo activity at 3x10-5M dye concentration in acidic medium at pH 3.
A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).
In recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
The aim of this work was directed to measure the cosmic ray (CR)
flux and the background (BG) absorbed dose rate for districts of
Baghdad city. The maximum values of CR flux was 2.01
(particle/cm2.s) registered for several Baghdad districts and the
minimum was 0.403 (particle/cm2.s) belonging to Al-kadhimiya
district, whereas the overall average value was 1.24 (particle/cm2.s).
The BG measurements showed that the maximum absorbed dose was
25 nSv/h belonging to Noab AL-Dhbat district and the minimum
absorbed was 19.01 nSv/h observed in Al-Ghadeer district, while
the overall average was 22.56 nSv/h, and this value is small than the
Iraqi permissible limit, which is restricted by Iraqi Center of
Radiation Pr