Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based features and color based features. The extracted features are finally fed to Deep Belief Network (DBN) for classification purpose. Different tests were performed and different combinations of feature types are attempted. The achieved results showed that when using combined vectors of local descriptors, the system gives the desired accuracy which is 100%. The achieved result demonstrates the effectiveness of using local descriptors in solving malaria infection detection problem.
In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
Malaysia has been supported by one of the high-speed fiber internet connections called TM UniFi. TM UniFi is very familiar to be used as a medium to apply Small Office Home Office (SOHO) concept due to the COVID-19 pandemic. Most of the communication vendors offer varieties of network services to fulfill customers' needs and satisfaction during the pandemic. Quality of Services is queried by most users by the fact of increased on users from time to time. Therefore, it is crucial to know the network performance contrary to the number of devices connected to the TM UniFi network. The main objective of this research is to analyze TM UniFi performance with the impact of multiple device connections or users' services. The study was conducted
... Show MoreAssessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.
In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.
To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) de
... Show MoreThe convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.
Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was
... Show Moretock markets changed up and down during time. Some companies’ affect others due to dependency on each other . In this work, the network model of the stock market is discribed as a complete weighted graph. This paper aims to investigate the Iraqi stock markets using graph theory tools. The vertices of this graph correspond to the Iraqi markets companies, and the weights of the edges are set ulrametric distance of minimum spanning tree.
The limitations of wireless sensor nodes are power, computational capabilities, and memory. This paper suggests a method to reduce the power consumption by a sensor node. This work is based on the analogy of the routing problem to distribute an electrical field in a physical media with a given density of charges. From this analogy a set of partial differential equations (Poisson's equation) is obtained. A finite difference method is utilized to solve this set numerically. Then a parallel implementation is presented. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a processing element. All nodes then execute computations in parall
... Show MoreForecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti
... Show MoreThis paper critically looks at the studies that investigated the Social Network Sites in the Arab region asking whether they made a practical addition to the field of information and communication sciences or not. The study tried to lift the ambiguity of the variety of names, as well as the most important theoretical and methodological approaches used by these studies highlighting its scientific limitations. The research discussed the most important concepts used by these studies such as Interactivity, Citizen Journalism, Public Sphere, and Social Capital and showed the problems of using them because each concept comes out of a specific view to these websites. The importation of these concepts from a cultural and social context to an Ara
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show More