This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation results regarding the ultimate strength, deformation, and failure modes, thereby validating the accuracy of the considered models. On the other hand, the numerical results of the column specimens under 50 mm eccentric load demonstrated that, in that case, the ultimate load of the columns decreased. The capacity of the reference column, a column with steel I-section, and a column with GFRP I-section decreased to 67%, 63%, and 64%, respectively compared with the columns tested under concentric load. The analytical investigation predicted the load-carrying capacity and bending moment capacity of the specimens with good accuracy. Based on the experimental curves, and the high strength found in the specimens that use the steel I- and GFRP I-sections, a good agreement between the numerical simulation and the experimental results was noticed.
Study of group action of stone columns using FEM
In this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400) mm with total height of (14000) mm. The dimensions of side openings were (600*2000) mm. The column was reinforced with (20) mm diameter in longitudinal direction, while (12) mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied. &
... Show MoreThe performance of composite prestressed concrete beam topped with reinforced concrete flange structures in fire depends upon several factors, including the change in properties of the two different materials due to fire exposure and temperature distribution within the composition of the composite members of the structure. The present experimental work included casting of 12 identical simply supported prestressed concrete beams grouped into 3 categories, depending on the strength of the top reinforced concrete deck slab (20, 30, and 40 MPa). They were connected together by using shear connector reinforcements. To simulate the real practical fire disasters, 3 composite prestressed concrete beams from each group were exposed to high t
... Show MoreIn this paper, first we refom1Ulated the finite element model
(FEM) into a neural network structure using a simple two - dimensional problem. The structure of this neural network is described
, followed by its application to solving the forward and inverse problems. This model is then extended to the general case and the advantages and di sadvantages of this approach are descri bed along with an analysis of the sensi tivity of
... Show MoreBuried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show MoreThis work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreSteel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreThis paper is concerned with introducing and studying the new approximation operators based on a finite family of d. g. 'swhich are the core concept in this paper. In addition, we study generalization of some Pawlak's concepts and we offer generalize the definition of accuracy measure of approximations by using a finite family of d. g. 's.