The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.
There is no access to basic sanitation for half the world's population, leading to Socioeconomic issues, such as scarcity of drinking water and the spread of diseases. In this way, it is of vital importance to develop water management technologies relevant to the target population. In addition, in the separation form of water treatment, the compound often used as a coagulant in water treatment is aluminum sulfate, which provides good results for raw water turbidity and color removal. Studies show, however, that its deposition in the human body, even Alzheimer's disease, can cause serious harm to health and disease development. The study aims to improve the coagulation/flocculation stage related to the amount of flakes, i
... Show MoreThe Mannich reaction is one of the most important types of organic chemistry fundamental reactions. It is a crucial stage in the production of various medicines, natural goods, and industrial chemicals. Chemists' imaginations have always been piqued because of this. In general, the Mannich reactions can be used as part of a tandem reaction sequence to produce complex target molecules in an elegant and often easy manner. The following article examines and summarizes methods for synthesizing Mannich derivatives, in addition to offering a survey of recent advancements in several fields’ applications of the Mannich reaction, such as biological applications, antimicrobial activity, anticancer activity, anti-inflammation and antio
... Show MoreDeveloping a solid e-voting system that offers fairness and privacy for users is a challenging objective. This paper is trying to address whether blockchain can be used to build an efficient e-voting system, also, this research has specified four blockchain technologies with their features and limitations. Many papers have been reviewed in a study covered ten years from 2011 to 2020. As a result of the study, the blockchain platform can be a successful public ledger to implement an e-voting system. Four blockchain technologies have been noticed from this study. These are blockchain using smart contracts, blockchain relying on Zcash platform, blockchain programmed from scratch, and blockchain depending on digital signature. Each bl
... Show MoreThe current research aims to diagnose the role of social responsibility as a contributing factor in enhancing the quality of services provided by the public sector in Iraq, where the research sought to demonstrate the relationship and impact of social responsibility dimensions (economic, legal, moral, and human) on the sector Services related to the electric field in Nineveh governorate because of its importance and its direct relationship with the citizen especially after the end of military operations in the destruction of the electricity sector by a large percentage in the city of Mosul. Nineveh Electricity Distribution Directorate / Center was chosen as a research community including (administrators and staff) of the research
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreIn this paper we study the effect of the number of training samples for Artificial neural networks ( ANN ) which is necessary for training process of feed forward neural network .Also we design 5 Ann's and train 41 Ann's which illustrate how good the training samples that represent the actual function for Ann's.