The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.
The current study aimed to review previous scholarly efforts to understand the concept of sustainable development, its practices, and its significance for public institutions. The study focuses on the dimensions of sustainable development—environmental, social, and economic—within public institutions. Sustainable development allows these institutions to balance environmental protection, economic growth, and social justice, ensuring the prosperity of both current and future generations. Furthermore, sustainable development is crucial for maintaining organizational performance. The review bridges knowledge gaps related to sustainable development and utilizes an analytical approach, surveying previous studies on the topic. The sele
... Show MoreThis research aims to underscore the significance of women's emotional intelligence in enhancing the effectiveness of the Board of Directors, a crucial component of internal governance, particularly during crises. Despite strides made in recent decades in appointing women to senior roles in government, business, and education, challenges persist in improving women's leadership opportunities, especially in developing countries. The study utilizes statistical methods, including Pearson's correlation, to analyze the relationships between variables within a sample of banks listed on the Iraqi securities market, comparing periods before and during the COVID-19 pandemic (2019 and 2020). The goal is to measure the impact of female emotiona
... Show MoreThe subject of the research seeks to indicate the level of influence of emotional intelligence in the empowerment of workers in the Ministry of Industry and Minerals General Company for Food Products. The research problem is illustrated by knowing all of the following:
- The level of the relationship between emotional intelligence in promoting the empowerment of employees of the Ministry of Industry and Minerals.
- The impact of emotional intelligence on the empowerment of workers in the ministry.
- Recognize the interest of the management of the Ministry of Industry and Minerals in emotional intelligence and the
This review is concluded of 8-Hydroxyquinline (8HQ) compound and derivatives which has a very significant interests with a strong fluorescence , furthermore the relationship between divalent metal ions and characteristic of chelating . In the same way coordinated features have increase of its organic action and inorganic behavior by giving many samples of compounds which are a good chelating agents ligands with more capable of forming very stable complexes.Therefore, the role of (8HQ) is not limited on complexes only but its applications in different fields so this review will focus on demonstration preparation methods and properties of (8HQ) derivatives with their complexes and applications, hopefully that we will cover a part of scientifi
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreBacterial meningitis is a leading cause of illness and death worldwide. It is crucial for clinical and public health care, as well as disease control, to identify the meningitis-causing agent promptly. Between June 2021-February 2022, a total of 100 cerebrospinal fluid (CSF) and blood samples were collected from suspected cases of meningitis admitted to Raparin Paediatric Teaching Hospital, Erbil city-Iraq. Cytochemical, cultural, and biochemical tests were conducted, and confirmed by molecular techniques. Bacterial culture findings were positive in 7% of CSF samples and just one positive among blood samples. The most common pathogens found by cultural characteristics and VITEK 2 Compact System were Staphylococcus sciuri in two
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show More