The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.
COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The expe
... Show MoreZainab M. Al-Bahrani Department of Oral Diagnosis, College of Dentistry, University of Baghdad, Baghdad, Iraq.Corresponding author: Zainab M. Al-Bahra...
The main aim of this research is to introduce financing cost optimization and different financing alternatives. There are many studies about financing cost optimization. All previous studies considering the cost of financing have many shortcomings, some considered only one source of financing as a credit line without taking into account different financing alternatives. Having only one funding alternative powers, restricts contractors and leads to a very specific financing model. Although it is beneficial for the contractor to use a long-term loan to minimize interest charges and prevent a substantial withdrawal from his credit line, none of the existing financial-based planning models have considered long-term loans in
... Show MoreConstruction projects are characterized as projects with multi phases and activities, complex, unique, and have many different parties and stakeholders. Risks could appear at one or more of the construction project stages and may affect the achievement of project objectives. Therefore, one of the key elements in the planning phase of any project is the risk management process (RMP). This study attempts to understand the terminology of risk in general, risk management, and response to risk in particular. This study is mainly a review of thirty-eight studies that have been published between 1997 and 2020 that demonstrate the importance of the crucial phase of risk response from the risk management process and its impact on
... Show MoreAPDBN Rashid, Southern African Linguistics and Applied Language Studies, 2023
In this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
Background: Ejection fraction have been used frequently
for assessment of the left ventricular function, but can be
associated with errors in which myocardial performance
index have been used as another parameter to measure the
left ventricular function.
Objective: selecting another echocardiography parameter
for the assessment of myocardial in function instead of the
ejection fraction.
Methods: 160 patients referred to the echocardiogram unit
from the period december 2007 to august 2008 requesting
assessment of left ventricular function. After clinical
examination, routine blood tests; chest x-ray and
electrocardiographic recording have been completed. All
patients informed to come for this unit af
Background: The coexistence of renal and heart failure carries an extremely bad prognosis. The exact cause of deterioration of kidney function and the mechanism underlying this interaction are complex, multifactorial in nature, and still not completely understood. Both the heart and the kidney act in tandem to regulate blood pressure, vascular tone, diuresis, natriuresis, etc.
Patients and methods: Sixty patients mean age 65.5 year were complaining heart failure duo to different causes assessed for renal function (blood urea &creatinine) and cardiac function by echocardiography in day 0 and 10 day after treatment of heart failure.
Results: The mean value (±S.D) of blood urea and serum creatinine on day 0 were 64.17mg/dL (±30.