Preferred Language
Articles
/
MhZqGIcBVTCNdQwCjDau
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspension solids (SS), chloride, cl, hydrogen ion concentration, pH, sulfate, SO4-2, nitrate, NO3- and phosphate, PO4-3. Taking these criteria into account, samples of water from the sampling sites were graded as C, indicating the pollutant of the waste treatment. Then the water quality map using neural network model was based on the results of water quality assessment. The results showed that the model North Al-Rustumiyia for line F2 was more efficient and R2 was 0.965 with the impotence parameter was chloride (CL).</p>
Scopus Crossref
View Publication
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Performance Improvement of Neural Network Based RLS Channel Estimators in MIMO-OFDM Systems
...Show More Authors

The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Arabian Journal Of Geosciences
Assessment of interconnection between surface water and groundwater in Sawa Lake area, southern Iraq, using stable isotope technique
...Show More Authors

View Publication
Scopus (28)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Drought assessment in Iraq using analysis of Standardized precipitation index (SPI)
...Show More Authors

The Present study investigated the drought in Iraq, by using the rainfall data which obtained from 39 meteorological stations for the past 30 years (1980-2010). The drought coefficient calculated on basis of the standard precipitation index (SPI) and then characteristics of drought magnitude, duration and intensity were analyzed. The correlation and regression between magnitude and duration of drought were obtained according the (SPI) index. The result shows that drought magnitude values were greater in the northeast region of Iraq. 

View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Inhibitory Effect of Bacteriophages Isolated from Sewage Water in the City of Kirkuk on some Types of Human Pathogenic Bacteria
...Show More Authors

Most approaches to combat antibiotic resistant bacteria concentrate on discovering new antibiotics or modifying existing ones. However, one of the most promising alternatives is the use of bacteriophages. This study was focused on the isolation of bacteriophages that are specific to some of commonly human pathogens namely E. coli, Streptococcus pyogenes, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella spp. and Klebsiella pneumoniae. These bacteriophages were isolated from sewages that were collected from four different locations in Kirkuk City. Apart from S. pyogenes, bacteriophages specific to all tested bacteria were successfully isolated and tested for their effectiveness by spot test. The most effective

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Development and Assessment of Feed Forward Back Propagation Neural Network Models to Predict Sunshine Duration
...Show More Authors

         The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmosp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Green Engineering
Assessment and modelling of water quality along Al-Gharraf River (Iraq)
...Show More Authors

Scopus (9)
Scopus
Publication Date
Wed Oct 01 2025
Journal Name
Journal Of Economics And Administrative Sciences
A Modified Fama-MacBeth Model based on the Single-Index Model
...Show More Authors

The aim of this essay is to use a single-index model in developing and adjusting Fama-MacBeth.  Penalized smoothing spline regression technique (SIMPLS) foresaw this adjustment.  Two generalized cross-validation techniques, Generalized Cross Validation Grid (GGCV) and Generalized Cross Validation Fast (FGCV), anticipated the regular value of smoothing covered under this technique. Due to the two-steps nature of the Fama-MacBeth model, this estimation generated four estimates: SIMPLS(FGCV) - SIMPLS(FGCV), SIMPLS(FGCV) - SIM PLS(GGCV), SIMPLS(GGCV) - SIMPLS(FGCV), SIM PLS(GGCV) - SIM PLS(GGCV). Three-factor Fama-French model—market risk premium, size factor, value factor, and their implication for excess stock returns and portfolio return

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Intelligent Congestion Control of 5G Traffic in SDN using Dual-Spike Neural Network
...Show More Authors

Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref