Preferred Language
Articles
/
MhZqGIcBVTCNdQwCjDau
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspension solids (SS), chloride, cl, hydrogen ion concentration, pH, sulfate, SO4-2, nitrate, NO3- and phosphate, PO4-3. Taking these criteria into account, samples of water from the sampling sites were graded as C, indicating the pollutant of the waste treatment. Then the water quality map using neural network model was based on the results of water quality assessment. The results showed that the model North Al-Rustumiyia for line F2 was more efficient and R2 was 0.965 with the impotence parameter was chloride (CL).</p>
Scopus Crossref
View Publication
Publication Date
Sun Dec 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of penetration Rate and cost with Artificial Neural Network for Alhafaya Oil Field
...Show More Authors

Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Dec 15 2023
Journal Name
Iraqi Journal Of Laser
Silver Nanoflowers as an Interfacial Liquid-State Surface Enhanced Raman Spectroscopy (SERS) Sensor for Water Pollution
...Show More Authors

Water pollution has created a critical threat to the environment.‎‎ A lot of research has been done ‎recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS ‎based on colloidal Ag ‎nanoflowers. The chemical method was used to synthesize nanoflowers from silver ‎ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This ‎nanoflowers SERS action in detecting Na3PO4 was reported and analyzed

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Artificial Neural Network Model for Wastewater Projects Maintenance Management Plan
...Show More Authors

Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Intelligent Systems
Trip generation modeling for a selected sector in Baghdad city using the artificial neural network
...Show More Authors
Abstract<p>This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to</p> ... Show More
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Drinking water quality evaluation of hand pumping wells using water quality index and standard algal toxicity testing in Mansoura and Talkha cities, Egypt
...Show More Authors

Six house-hold Abyssinian pumps distributed in different villages of Mansoura (Mans-I, Mans-II and Mans-III) and Talkha (Talk-I, Talk-II and Talk-III) cities, Egypt, have been selected for regular seasonal water quality assessment during 2017. Water samples have been collected within the mid-periods of four seasons Standard assessment tools were employed for the integrated water quality assessment including Water Quality Index (WQI) and ISO standard algal toxicity test. WQI displayed remarkable local and seasonal variations with excellent (≥ 90) and good (70 - 89) only recorded for water samples collected from Mans-I pump located in sparsely populated area and far 50 meters only from the eastern (Damietta) branch of Nile River. WQI of

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Pollution threatens water quality in the Central Marshes of Southern Iraq
...Show More Authors

Water pollution is an issue that can be exacerbated by drought as increased concentrations of unwanted substances are a consequence of lower water levels. Polluted water that flows into natural marshlands leads to the deposition of pollutants in the interior of the marsh. Here we present evidence that the interior of the Central Marsh (CM) in southern Iraq suffers from higher levels of pollution than areas closer to the source of water entering the marsh (the Euphrates River). A 1.7m embankment that halts the flow of the Euphrates is only infrequently breached and so the CM is effectively the terminal destination of the waters (and their associated pollutants and agricultural waste) flowing from the West of Iraq.

A range of water

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories &amp; Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jul 01 2000
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
EFFICIENCY OF AL-RUSTAMITYAH SEWAGE PLANT AND THEIR CONSEQUENCES ON THE POLLUTION OF DIYALA RIVER
...Show More Authors

The present work initiated to eaIuate the efficiency of Al-Rustamivah sewage treatment plant
as reflected by the quality of final effluent that is thrown to Di ala river. Weekly samples of
wastewater and final effluent were collected between November 1994 and end of January
1995 and analyzed for different chemical and biological features. Results ha e inidicated that
Al-Rustamiyah sewage treatment plant could not be able efficiently to purify the raw sewage.
The mean values of suspended solids. BOD. COD Dichromate and Oil & grease effluents
were felt to pass standard limits (98.4. 92.8. 125.2 and 39.1 ppm. respectiel). The atherse
possible effects of pollution on Diuala equatic life hae been also discussed in res

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Agriculture And Agricultural Science Procedia
The Influence of the Water Quality on the Droplet Spectrum Produced by Agricultural Nozzles
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City
...Show More Authors

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul

... Show More
View Publication Preview PDF