Preferred Language
Articles
/
MhZWL4cBVTCNdQwCnDzd
Experimental and Numerical Investigations of Heat Transfer Characteristics for Impinging Swirl Flow

This paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which corresponds to the swirl number Sw = 0.671, provided much more uniform local heat transfer distribution on the surface. The CFD-predicted results help to explain the experimental measurements in terms of the turbulence intensity. Furthermore, the predicted and measured local Nusselt numbers were consistent with each other.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 29 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
NUMERICAL INVESTIGATION OF DEVELOPING LAMINAR FLUID FLOW THROUGH RECTANGULAR ANNULUS DUCT

The laminar fluid flow of water through the annulus duct was investigated numerically by ANSYS fluent version 15.0 with height (2.5, 5, 7.5) cm and constant length (L=60cm). With constant heat flux applied to the outer duct. The heat flux at the range (500,1000,1500,2000) w/m2 and Reynolds number values were ≤ 2300. The problem was 2-D investigated. Results revealed that Nusselt number decrease and the wall temperature increase with the increase of heat flux. Also, the average Nusselt number increase as Re increases. And as the height of the annulus increase, the values of the temperature and the local and average Nusselt number increase.

Crossref
View Publication
Publication Date
Tue Mar 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Numerical study of the mixed convection flow over a square cylinder

In this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respective

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Numerical Simulation of Flow in Rectangular Duct with Different Obstruction Heights

       In this study, a simulation model inside a channel of rectangular section with high of (0.16 m) containing two rectangular obstruction plates were aligned variable heights normal to the direction of flow, use six model of the obstructions height of (0.059, 0.066, 0.073, 0.08 and 0.087 m) were compared with the flow behavior of the same duct without obstructions. To predict the velocity profile, pressure distribution, pressure coefficient and turbulence kinetic energy flow of air, the differential equations which describe the flow were approximated by the finite volumes method for two dimensional, by using commercial software package (FLUENT) with standard of k-ε model two dimensions turbulence flow.

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct

This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.

... Show More
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Evaluation of Convective Heat Transfer and Natural Circulation in an Evacuated Tube Solar Collector

The evacuated tube solar collector ETC is studied intensively and extensively by experimental and
theoretical works, in order to investigate its performance and enhancement of heat transfer, for Baghdad climate
from April 2011 till the end of March 2012. Experimental work is carried out on a well instrumented collector
consists of 16 evacuated tubes of aspect ratio 38.6 and thermally insulated tank of volume 112L. The relation
between convective heat transfer and natural circulation inside the tube is estimated, collector efficiency, effect of
tube tilt angles, incidence angle modifier, The solar heating system is investigated under different loads pattern (i.e
closed and open flow) to evaluate the heat loss coefficient

... Show More
Crossref (15)
Crossref
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
MIXED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A HORIZONTAL CONCENTRIC AND ECCENTRIC CYLINDRICAL ANNULI

A numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer progra

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Improved optical and mechanical characteristics of multilayered Cu/TiON/CrO2 coating via heat treatment for solar absorbing applications

In the last few decades, growing interest has been shown in the development of new solar selective coatings based on transition metal nitride and/or oxinitride for solar absorbing applications. Solar thermal collectors are well thought out to be the most effective process of converting and harvesting solar radiation. In this investigation, Cu/TiON/CrO2 multilayered solar selective absorber coatings have been coated onto Al substrates using the dip-coating process followed by an annealing process at (400, 450, 500, 550, and 600 °C. The XRD analysis showed excellent crystalline quality for the prepared thin films along with enhanced surface features as proved by FESEM images, and the grains are in the range of (27–81) nm. The optical in

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed May 15 2024
Journal Name
Iraqi Journal Of Applied Physics
Scopus
Publication Date
Sat Oct 09 2021
Journal Name
Nanomaterials
Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements

Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,

... Show More
Scopus (37)
Crossref (34)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Engineering
Experimental and numerical evaluation of friction stirs welding of AA 2024-W aluminum alloy

Friction Stir Welding (FSW) is one of the most effective solid states joining process and has numerous potential applications in many industries. A FSW numerical tool, based on ANSYS F.E software, has been developed. The amount of the heat gone to the tool dictates the life of the tool and the capability of the tool to produce a good processed zone. Hence, understanding the heat transfer aspect of the friction stir welding is extremely important for improving the process. Many research works were carried out to simulate the friction stir welding using various softwares to determine the temperature distribution for a given set of welding conditions. The objective of this research is to develop a finite element sim

... Show More
Crossref (2)
Crossref
View Publication Preview PDF